Filtros : "EQUAÇÕES DIFERENCIAIS FUNCIONAIS" "Differential and Integral Equations" Removido: "Nonlinear Analysis: Theory, Methods Limpar

Filtros



Refine with date range


  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, v. 27, n. 7-8, p. 721-742, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395750. Acesso em: 27 nov. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Federson, M. (2014). On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, 27( 7-8), 721-742. Recuperado de http://projecteuclid.org/euclid.die/1399395750
    • NLM

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2025 nov. 27 ] Available from: http://projecteuclid.org/euclid.die/1399395750
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2025 nov. 27 ] Available from: http://projecteuclid.org/euclid.die/1399395750
  • Source: Differential and Integral Equations. Unidades: ICMC, FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MESQUITA, J. G. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differential and Integral Equations, v. no/dez. 2013, n. 11-12, p. 1287-1320, 2013Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1378327427. Acesso em: 27 nov. 2025.
    • APA

      Federson, M., & Mesquita, J. G. (2013). Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differential and Integral Equations, no/dez. 2013( 11-12), 1287-1320. Recuperado de http://projecteuclid.org/euclid.die/1378327427
    • NLM

      Federson M, Mesquita JG. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations [Internet]. Differential and Integral Equations. 2013 ; no/dez. 2013( 11-12): 1287-1320.[citado 2025 nov. 27 ] Available from: http://projecteuclid.org/euclid.die/1378327427
    • Vancouver

      Federson M, Mesquita JG. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations [Internet]. Differential and Integral Equations. 2013 ; no/dez. 2013( 11-12): 1287-1320.[citado 2025 nov. 27 ] Available from: http://projecteuclid.org/euclid.die/1378327427
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE HARMÔNICA, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán e MORALES, Eduardo Alex Hernandez. Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, v. 21, n. 5-6, p. 575-600, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356038633. Acesso em: 27 nov. 2025.
    • APA

      Diagana, T., Henriquez, H., & Morales, E. A. H. (2008). Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, 21( 5-6), 575-600. Recuperado de https://projecteuclid.org/euclid.die/1356038633
    • NLM

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356038633
    • Vancouver

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356038633
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES IMPULSIVAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e SCHWABIK, Stefan. Generalized ODE approach to impulsive retarded functional differential equations. Differential and Integral Equations, v. 19, n. 11, p. 1201–1234, 2006Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356050300. Acesso em: 27 nov. 2025.
    • APA

      Federson, M., & Schwabik, S. (2006). Generalized ODE approach to impulsive retarded functional differential equations. Differential and Integral Equations, 19( 11), 1201–1234. Recuperado de https://projecteuclid.org/euclid.die/1356050300
    • NLM

      Federson M, Schwabik S. Generalized ODE approach to impulsive retarded functional differential equations [Internet]. Differential and Integral Equations. 2006 ; 19( 11): 1201–1234.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356050300
    • Vancouver

      Federson M, Schwabik S. Generalized ODE approach to impulsive retarded functional differential equations [Internet]. Differential and Integral Equations. 2006 ; 19( 11): 1201–1234.[citado 2025 nov. 27 ] Available from: https://projecteuclid.org/euclid.die/1356050300

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025