Filtros : "EQUAÇÕES DIFERENCIAIS FUNCIONAIS" "FEDERSON, MARCIA CRISTINA ANDERSON BRAZ" Removido: "Differential Equations and Applications" Limpar

Filtros



Refine with date range


  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: INTEGRAIS ESTOCÁSTICAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e BONOTTO, Everaldo de Mello. Stability of Nicholson's blowflies equation. 2025, Anais.. São Carlos: ICMC-USP, 2025. Disponível em: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php. Acesso em: 28 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Bonotto, E. de M. (2025). Stability of Nicholson's blowflies equation. In Abstracts. São Carlos: ICMC-USP. Recuperado de https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
    • NLM

      Silva FA da, Federson M, Bonotto E de M. Stability of Nicholson's blowflies equation [Internet]. Abstracts. 2025 ;[citado 2025 nov. 28 ] Available from: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
    • Vancouver

      Silva FA da, Federson M, Bonotto E de M. Stability of Nicholson's blowflies equation [Internet]. Abstracts. 2025 ;[citado 2025 nov. 28 ] Available from: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
    GDS 14. Life below waterGDS 15. Life on land
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 28 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 28 nov. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INTEGRAÇÃO, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE), DINÂMICA TOPOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Generalized ordinary differential equations in abstract spaces and applications. . Hoboken: Wiley. Disponível em: https://doi.org/10.1002/9781119655022. Acesso em: 28 nov. 2025. , 2021
    • APA

      Generalized ordinary differential equations in abstract spaces and applications. (2021). Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. doi:10.1002/9781119655022
    • NLM

      Generalized ordinary differential equations in abstract spaces and applications [Internet]. 2021 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1002/9781119655022
    • Vancouver

      Generalized ordinary differential equations in abstract spaces and applications [Internet]. 2021 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1002/9781119655022
  • Source: Generalized ordinary differential equations in abstract spaces and applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INTEGRAÇÃO, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE), DINÂMICA TOPOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MESQUITA, Jaqueline Godoy. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio]. Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. Disponível em: https://doi.org/10.1002/9781119655022.fmatter. Acesso em: 28 nov. 2025. , 2021
    • APA

      Bonotto, E. de M., Federson, M., & Mesquita, J. G. (2021). It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio]. Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. doi:10.1002/9781119655022.fmatter
    • NLM

      Bonotto E de M, Federson M, Mesquita JG. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio] [Internet]. Generalized ordinary differential equations in abstract spaces and applications. 2021 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1002/9781119655022.fmatter
    • Vancouver

      Bonotto E de M, Federson M, Mesquita JG. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio] [Internet]. Generalized ordinary differential equations in abstract spaces and applications. 2021 ;[citado 2025 nov. 28 ] Available from: https://doi.org/10.1002/9781119655022.fmatter
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 28 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIMENES, Luciene P e FEDERSON, Marcia. Oscillation by impulses for a second order delay differential equation. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7566e696-5d95-45e6-863f-2ea2114be760/1455902.pdf. Acesso em: 28 nov. 2025. , 2005
    • APA

      Gimenes, L. P., & Federson, M. (2005). Oscillation by impulses for a second order delay differential equation. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7566e696-5d95-45e6-863f-2ea2114be760/1455902.pdf
    • NLM

      Gimenes LP, Federson M. Oscillation by impulses for a second order delay differential equation [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/7566e696-5d95-45e6-863f-2ea2114be760/1455902.pdf
    • Vancouver

      Gimenes LP, Federson M. Oscillation by impulses for a second order delay differential equation [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/7566e696-5d95-45e6-863f-2ea2114be760/1455902.pdf
  • Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e SCHWABIK, S. Generalized ODEs approach to impulsive retarded differential equations. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/d0d00294-a7df-4f87-986f-3a8648030992/1474629.pdf. Acesso em: 28 nov. 2025. , 2005
    • APA

      Federson, M., & Schwabik, S. (2005). Generalized ODEs approach to impulsive retarded differential equations. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/d0d00294-a7df-4f87-986f-3a8648030992/1474629.pdf
    • NLM

      Federson M, Schwabik S. Generalized ODEs approach to impulsive retarded differential equations [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/d0d00294-a7df-4f87-986f-3a8648030992/1474629.pdf
    • Vancouver

      Federson M, Schwabik S. Generalized ODEs approach to impulsive retarded differential equations [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/d0d00294-a7df-4f87-986f-3a8648030992/1474629.pdf
  • Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIMENES, Luciene P e FEDERSON, Marcia. Existence and impulsive stability for second order retarded differential equations. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/b017625a-7e8e-4ad6-8b0a-5ddc2678ba8d/1440725.pdf. Acesso em: 28 nov. 2025. , 2005
    • APA

      Gimenes, L. P., & Federson, M. (2005). Existence and impulsive stability for second order retarded differential equations. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/b017625a-7e8e-4ad6-8b0a-5ddc2678ba8d/1440725.pdf
    • NLM

      Gimenes LP, Federson M. Existence and impulsive stability for second order retarded differential equations [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/b017625a-7e8e-4ad6-8b0a-5ddc2678ba8d/1440725.pdf
    • Vancouver

      Gimenes LP, Federson M. Existence and impulsive stability for second order retarded differential equations [Internet]. 2005 ;[citado 2025 nov. 28 ] Available from: https://repositorio.usp.br/directbitstream/b017625a-7e8e-4ad6-8b0a-5ddc2678ba8d/1440725.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025