Filtros : "ALGORITMOS GENÉTICOS" "China" Removido: "COMUNICAÇÕES OPTO-ELETRÔNICAS" Limpar

Filtros



Refine with date range


  • Source: New Phytologist. Unidade: ESALQ

    Subjects: ALGORITMOS GENÉTICOS, APRENDIZADO COMPUTACIONAL, MELHORAMENTO GENÉTICO VEGETAL, PLANTAS CULTIVADAS, REGULAÇÃO GÊNICA, RNA, SELEÇÃO GENÉTICA, TRANSFORMADA DE FOURIER

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TIAN, Xue‐Chan et al. PlantLncBoost: key features for plant ncRNA identification and significant improvement in accuracy and generalization. New Phytologist, v. 247, p. 1538–1549, 2025Tradução . . Disponível em: https://doi.org/10.1111/nph.70211. Acesso em: 27 nov. 2025.
    • APA

      Tian, X. ‐C., Nie, S., Domingues, D., Paschoal, A. R., Jiang, L. ‐B., & Mao, J. ‐F. (2025). PlantLncBoost: key features for plant ncRNA identification and significant improvement in accuracy and generalization. New Phytologist, 247, 1538–1549. doi:10.1111/nph.70211
    • NLM

      Tian X‐C, Nie S, Domingues D, Paschoal AR, Jiang L‐B, Mao J‐F. PlantLncBoost: key features for plant ncRNA identification and significant improvement in accuracy and generalization [Internet]. New Phytologist. 2025 ; 247 1538–1549.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/nph.70211
    • Vancouver

      Tian X‐C, Nie S, Domingues D, Paschoal AR, Jiang L‐B, Mao J‐F. PlantLncBoost: key features for plant ncRNA identification and significant improvement in accuracy and generalization [Internet]. New Phytologist. 2025 ; 247 1538–1549.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1111/nph.70211
  • Source: Health Information Science and Systems. Unidade: ICMC

    Subjects: SISTEMA DE SAÚDE, ALGORITMOS GENÉTICOS, TELEMEDICINA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PANG, Xinyu et al. Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm. Health Information Science and Systems, v. 11, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13755-023-00230-1. Acesso em: 27 nov. 2025.
    • APA

      Pang, X., Ge, Y. ‑F., Wang, K., Traina, A. J. M., & Wang, H. (2023). Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm. Health Information Science and Systems, 11, 1-12. doi:10.1007/s13755-023-00230-1
    • NLM

      Pang X, Ge Y‑F, Wang K, Traina AJM, Wang H. Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm [Internet]. Health Information Science and Systems. 2023 ; 11 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s13755-023-00230-1
    • Vancouver

      Pang X, Ge Y‑F, Wang K, Traina AJM, Wang H. Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm [Internet]. Health Information Science and Systems. 2023 ; 11 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s13755-023-00230-1
  • Source: Sensors. Unidade: ICMC

    Subjects: WIRELESS, ALGORITMOS GENÉTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Dezhi et al. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks. Sensors, v. 20, p. 1-24, 2020Tradução . . Disponível em: https://doi.org/10.3390/s20020343. Acesso em: 27 nov. 2025.
    • APA

      Han, D., Yu, Y., Li, K. -C., & Mello, R. F. de. (2020). Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks. Sensors, 20, 1-24. doi:10.3390/s20020343
    • NLM

      Han D, Yu Y, Li K-C, Mello RF de. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks [Internet]. Sensors. 2020 ; 20 1-24.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/s20020343
    • Vancouver

      Han D, Yu Y, Li K-C, Mello RF de. Enhancing the sensor node localization algorithm based on improved DV-Hop and DE algorithms in wireless sensor networks [Internet]. Sensors. 2020 ; 20 1-24.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3390/s20020343
  • Source: IEEE Transactions on Knowledge and Data Engineering. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COMPUTAÇÃO EVOLUTIVA, ALGORITMOS GENÉTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Everlandio Rebouças Queiroz e CARVALHO, André Carlos Ponce de Leon Ferreira de e YAO, Xin. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data. IEEE Transactions on Knowledge and Data Engineering, v. 32, n. 6, p. 1104-1115, 2020Tradução . . Disponível em: https://doi.org/10.1109/TKDE.2019.2898861. Acesso em: 27 nov. 2025.
    • APA

      Fernandes, E. R. Q., Carvalho, A. C. P. de L. F. de, & Yao, X. (2020). Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 32( 6), 1104-1115. doi:10.1109/TKDE.2019.2898861
    • NLM

      Fernandes ERQ, Carvalho ACP de LF de, Yao X. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data [Internet]. IEEE Transactions on Knowledge and Data Engineering. 2020 ; 32( 6): 1104-1115.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TKDE.2019.2898861
    • Vancouver

      Fernandes ERQ, Carvalho ACP de LF de, Yao X. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data [Internet]. IEEE Transactions on Knowledge and Data Engineering. 2020 ; 32( 6): 1104-1115.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TKDE.2019.2898861

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025