Filtros : "Sensors" "EP-PSI" Limpar

Filtros



Refine with date range


  • Source: Sensors. Unidade: EP

    Subjects: VEÍCULOS AUTÔNOMOS, RECONHECIMENTO DE OBJETOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Daniel Carvalho de et al. Evaluation of cluster algorithms for radar-based object recognition in autonomous and assisted driving. Sensors, v. No 2024, n. 22, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.3390/s24227219. Acesso em: 18 nov. 2025.
    • APA

      Ramos, D. C. de, Ferreira, L. R., Santos, M. M. D., Teixeira, E. L. S., Yoshioka, L. R., Justo Filho, J. F., & Malik, A. W. (2024). Evaluation of cluster algorithms for radar-based object recognition in autonomous and assisted driving. Sensors, No 2024( 22), 1-31. doi:10.3390/s24227219
    • NLM

      Ramos DC de, Ferreira LR, Santos MMD, Teixeira ELS, Yoshioka LR, Justo Filho JF, Malik AW. Evaluation of cluster algorithms for radar-based object recognition in autonomous and assisted driving [Internet]. Sensors. 2024 ; No 2024( 22): 1-31.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s24227219
    • Vancouver

      Ramos DC de, Ferreira LR, Santos MMD, Teixeira ELS, Yoshioka LR, Justo Filho JF, Malik AW. Evaluation of cluster algorithms for radar-based object recognition in autonomous and assisted driving [Internet]. Sensors. 2024 ; No 2024( 22): 1-31.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s24227219
  • Source: Sensors. Unidades: EP, EESC

    Subjects: SIMULAÇÃO, TRANSPORTE URBANO, MOBILIDADE URBANA, REDES NEURAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAGUANO, Rodrigo França et al. Automatic calibration of microscopic traffic simulation models using artificial neural networks. Sensors, v. 23, n. 21, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.3390/s23218798. Acesso em: 18 nov. 2025.
    • APA

      Daguano, R. F., Yoshioka, L. R., Netto, M. L., Marte, C. L., Isler, C. A., Santos, M. M. D. dos, & Justo Filho, J. F. (2023). Automatic calibration of microscopic traffic simulation models using artificial neural networks. Sensors, 23( 21), 1-23. doi:10.3390/s23218798
    • NLM

      Daguano RF, Yoshioka LR, Netto ML, Marte CL, Isler CA, Santos MMD dos, Justo Filho JF. Automatic calibration of microscopic traffic simulation models using artificial neural networks [Internet]. Sensors. 2023 ; 23( 21): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s23218798
    • Vancouver

      Daguano RF, Yoshioka LR, Netto ML, Marte CL, Isler CA, Santos MMD dos, Justo Filho JF. Automatic calibration of microscopic traffic simulation models using artificial neural networks [Internet]. Sensors. 2023 ; 23( 21): 1-23.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s23218798
  • Source: Sensors. Unidades: EP, IF

    Subjects: SEMICONDUTORES, FILMES FINOS, ESPECTROSCOPIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZQUIERDO, Jose Enrique Eirez et al. Detection of water contaminants by organic transistors as gas sensors in a bottom-gate/bottom-contact cross-linked structure. Sensors, v. 23, n. 18, 2023Tradução . . Disponível em: https://doi.org/10.3390/s23187981. Acesso em: 18 nov. 2025.
    • APA

      Izquierdo, J. E. E., Cavallari, M. R., García, D. C., Fonseca, F. J., & Quivy, A. A. (2023). Detection of water contaminants by organic transistors as gas sensors in a bottom-gate/bottom-contact cross-linked structure. Sensors, 23( 18). doi:10.3390/s23187981
    • NLM

      Izquierdo JEE, Cavallari MR, García DC, Fonseca FJ, Quivy AA. Detection of water contaminants by organic transistors as gas sensors in a bottom-gate/bottom-contact cross-linked structure [Internet]. Sensors. 2023 ; 23( 18):[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s23187981
    • Vancouver

      Izquierdo JEE, Cavallari MR, García DC, Fonseca FJ, Quivy AA. Detection of water contaminants by organic transistors as gas sensors in a bottom-gate/bottom-contact cross-linked structure [Internet]. Sensors. 2023 ; 23( 18):[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s23187981
  • Source: Sensors. Unidade: EP

    Subjects: REDES NEURAIS, ANÁLISE DE SÉRIES TEMPORAIS, APRENDIZAGEM PROFUNDA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESCOTTÁ, Álvaro Teixeira e BECCARO, Wesley e ARJONA RAMÍREZ, Miguel. Evaluation of 1D and 2D deep convolutional neural networks for driving event recognition. Sensors, v. 22, n. 11, 2022Tradução . . Disponível em: https://doi.org/10.3390/s22114226. Acesso em: 18 nov. 2025.
    • APA

      Escottá, Á. T., Beccaro, W., & Arjona Ramírez, M. (2022). Evaluation of 1D and 2D deep convolutional neural networks for driving event recognition. Sensors, 22( 11). doi:10.3390/s22114226
    • NLM

      Escottá ÁT, Beccaro W, Arjona Ramírez M. Evaluation of 1D and 2D deep convolutional neural networks for driving event recognition [Internet]. Sensors. 2022 ; 22( 11):[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22114226
    • Vancouver

      Escottá ÁT, Beccaro W, Arjona Ramírez M. Evaluation of 1D and 2D deep convolutional neural networks for driving event recognition [Internet]. Sensors. 2022 ; 22( 11):[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22114226
  • Source: Sensors. Unidade: EP

    Assunto: FIBRA ÓPTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHIANTI, Juliana de Novais et al. Real time water-in-oil emulsion size measurement in optofluidic channels. Sensors, v. 22, n. 13, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.3390/s22134999. Acesso em: 18 nov. 2025.
    • APA

      Schianti, J. de N., Abe, I. Y., Carvalho, D. O. de, & Alayo Chávez, M. I. (2022). Real time water-in-oil emulsion size measurement in optofluidic channels. Sensors, 22( 13), 1-10. doi:10.3390/s22134999
    • NLM

      Schianti J de N, Abe IY, Carvalho DO de, Alayo Chávez MI. Real time water-in-oil emulsion size measurement in optofluidic channels [Internet]. Sensors. 2022 ; 22( 13): 1-10.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22134999
    • Vancouver

      Schianti J de N, Abe IY, Carvalho DO de, Alayo Chávez MI. Real time water-in-oil emulsion size measurement in optofluidic channels [Internet]. Sensors. 2022 ; 22( 13): 1-10.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22134999
  • Source: Sensors. Unidade: EP

    Subjects: SENSORES BIOMÉDICOS, DISPOSITIVOS DE MICRO-ONDAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHAHRI, Atena Amanati et al. A microwave-based microfluidic cell detecting biosensor for biological quantification using the metallic nanowire-filled membrane technology. Sensors, v. 22, n. 9, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.3390/s22093265. Acesso em: 18 nov. 2025.
    • APA

      Shahri, A. A., Omidvar, A. H., Rehder, G. P., & Serrano, A. M. da C. L. C. (2022). A microwave-based microfluidic cell detecting biosensor for biological quantification using the metallic nanowire-filled membrane technology. Sensors, 22( 9), 1-13. doi:10.3390/s22093265
    • NLM

      Shahri AA, Omidvar AH, Rehder GP, Serrano AM da CLC. A microwave-based microfluidic cell detecting biosensor for biological quantification using the metallic nanowire-filled membrane technology [Internet]. Sensors. 2022 ; 22( 9): 1-13.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22093265
    • Vancouver

      Shahri AA, Omidvar AH, Rehder GP, Serrano AM da CLC. A microwave-based microfluidic cell detecting biosensor for biological quantification using the metallic nanowire-filled membrane technology [Internet]. Sensors. 2022 ; 22( 9): 1-13.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22093265
  • Source: Sensors. Unidades: IQ, EP

    Subjects: SENSORES QUÍMICOS, COMPOSTOS HETEROCÍCLICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OMIDVAR, Amir Hossein et al. A highly sensitive molecularly imprinted polymer (MIP)-coated microwave glucose sensor. Sensors, v. 22, n. 22, p. 1-15 art. 8648, 2022Tradução . . Disponível em: https://doi.org/10.3390/s22228648. Acesso em: 18 nov. 2025.
    • APA

      Omidvar, A. H., Shahri, A. A., Serrano, A. L. C., Gruber, J., & Rehder, G. P. (2022). A highly sensitive molecularly imprinted polymer (MIP)-coated microwave glucose sensor. Sensors, 22( 22), 1-15 art. 8648. doi:10.3390/s22228648
    • NLM

      Omidvar AH, Shahri AA, Serrano ALC, Gruber J, Rehder GP. A highly sensitive molecularly imprinted polymer (MIP)-coated microwave glucose sensor [Internet]. Sensors. 2022 ; 22( 22): 1-15 art. 8648.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22228648
    • Vancouver

      Omidvar AH, Shahri AA, Serrano ALC, Gruber J, Rehder GP. A highly sensitive molecularly imprinted polymer (MIP)-coated microwave glucose sensor [Internet]. Sensors. 2022 ; 22( 22): 1-15 art. 8648.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s22228648
  • Source: Sensors. Unidade: EP

    Subjects: APRENDIZADO COMPUTACIONAL, INSTRUÇÃO PROGRAMADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MILITANI, Davi Ribeiro et al. Enhanced routing algorithm based on reinforcement machine learning: a case of voIP service. Sensors, v. 21, n. 2, p. 504-536, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21020504. Acesso em: 18 nov. 2025.
    • APA

      Militani, D. R., Moraes, H. P. de, Rosa, R. L., Zegarra Rodriguez, D., Arjona Ramírez, M., & Wuttisittikulkij, L. (2021). Enhanced routing algorithm based on reinforcement machine learning: a case of voIP service. Sensors, 21( 2), 504-536. doi:10.3390/s21020504
    • NLM

      Militani DR, Moraes HP de, Rosa RL, Zegarra Rodriguez D, Arjona Ramírez M, Wuttisittikulkij L. Enhanced routing algorithm based on reinforcement machine learning: a case of voIP service [Internet]. Sensors. 2021 ;21( 2): 504-536.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21020504
    • Vancouver

      Militani DR, Moraes HP de, Rosa RL, Zegarra Rodriguez D, Arjona Ramírez M, Wuttisittikulkij L. Enhanced routing algorithm based on reinforcement machine learning: a case of voIP service [Internet]. Sensors. 2021 ;21( 2): 504-536.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21020504
  • Source: Sensors. Unidades: EP, IQ

    Subjects: PRATA, ETANOL, NANOPARTÍCULAS, HEMATITA, COMPOSTOS ORGÂNICOS, SEMICONDUTORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OSORIO, Daniel Garcia et al. Silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature. Sensors, v. 21, p. 1-13 art. 440 : + Supplementary materials ( S1-S3), 2021Tradução . . Disponível em: https://doi.org/10.3390/s21020440. Acesso em: 18 nov. 2025.
    • APA

      Osorio, D. G., Hidalgo Falla, M. del P., Peres, H. E. M., Gonçalves, J. M., Araki, K., Segura, S. G., & Picasso, G. (2021). Silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature. Sensors, 21, 1-13 art. 440 : + Supplementary materials ( S1-S3). doi:10.3390/s21020440
    • NLM

      Osorio DG, Hidalgo Falla M del P, Peres HEM, Gonçalves JM, Araki K, Segura SG, Picasso G. Silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature [Internet]. Sensors. 2021 ; 21 1-13 art. 440 : + Supplementary materials ( S1-S3).[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21020440
    • Vancouver

      Osorio DG, Hidalgo Falla M del P, Peres HEM, Gonçalves JM, Araki K, Segura SG, Picasso G. Silver enhances hematite nanoparticles based ethanol sensor response and selectivity at room temperature [Internet]. Sensors. 2021 ; 21 1-13 art. 440 : + Supplementary materials ( S1-S3).[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21020440
  • Source: Sensors. Unidade: EP

    Subjects: TELECOMUNICAÇÕES, REDES SOCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Samuel Terra et al. Q-Meter: quality monitoring system for telecommunication services based on sentiment analysis using deep learning. Sensors, v. 21, n. 5, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21051880. Acesso em: 18 nov. 2025.
    • APA

      Vieira, S. T., Rosa, R. L., Zegarra Rodriguez, D., Arjona Ramírez, M., Saadi, M., & Wuttisittikulkij, L. (2021). Q-Meter: quality monitoring system for telecommunication services based on sentiment analysis using deep learning. Sensors, 21( 5), 1-18. doi:10.3390/s21051880
    • NLM

      Vieira ST, Rosa RL, Zegarra Rodriguez D, Arjona Ramírez M, Saadi M, Wuttisittikulkij L. Q-Meter: quality monitoring system for telecommunication services based on sentiment analysis using deep learning [Internet]. Sensors. 2021 ;21( 5): 1-18.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21051880
    • Vancouver

      Vieira ST, Rosa RL, Zegarra Rodriguez D, Arjona Ramírez M, Saadi M, Wuttisittikulkij L. Q-Meter: quality monitoring system for telecommunication services based on sentiment analysis using deep learning [Internet]. Sensors. 2021 ;21( 5): 1-18.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s21051880
  • Source: Sensors. Unidades: EP, IQ

    Subjects: NANOTUBOS DE CARBONO, MATERIAIS NANOESTRUTURADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABOT, Jandro L et al. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration. Sensors, v. 18, n. 2, p. 464, 2018Tradução . . Disponível em: https://doi.org/10.3390/s18020464. Acesso em: 18 nov. 2025.
    • APA

      Abot, J. L., Seabra, A. C., Góngora Rubio, M. R., Mello, L. A. M., & Guimarães, K. L. (2018). Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration. Sensors, 18( 2), 464. doi:10.3390/s18020464
    • NLM

      Abot JL, Seabra AC, Góngora Rubio MR, Mello LAM, Guimarães KL. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration [Internet]. Sensors. 2018 ; 18( 2): 464.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s18020464
    • Vancouver

      Abot JL, Seabra AC, Góngora Rubio MR, Mello LAM, Guimarães KL. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration [Internet]. Sensors. 2018 ; 18( 2): 464.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s18020464
  • Source: Sensors. Unidade: EP

    Subjects: MONITORAMENTO AMBIENTAL, ÍONS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Mauro Sergio et al. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification. Sensors, v. 17, n. 8, p. 1730-1743, 2017Tradução . . Disponível em: https://doi.org/10.3390/s17081730. Acesso em: 18 nov. 2025.
    • APA

      Braga, M. S., Jaimes, R. F. V. V., Borysow, W., Gomes, O. F., & Salcedo, W. J. (2017). Portable Multispectral Colorimeter for Metallic Ion Detection and Classification. Sensors, 17( 8), 1730-1743. doi:10.3390/s17081730
    • NLM

      Braga MS, Jaimes RFVV, Borysow W, Gomes OF, Salcedo WJ. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification [Internet]. Sensors. 2017 ; 17( 8): 1730-1743.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s17081730
    • Vancouver

      Braga MS, Jaimes RFVV, Borysow W, Gomes OF, Salcedo WJ. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification [Internet]. Sensors. 2017 ; 17( 8): 1730-1743.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s17081730
  • Source: Sensors. Unidades: IFSC, EP

    Subjects: FILMES FINOS, DOENÇAS (DIAGNÓSTICO), DISPOSITIVOS ELETRÔNICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALLARI, Marco Roberto et al. Enhanced sensitivity of gas sensor based on poly(3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring. Sensors, v. 15, n. 4, p. 9592-9609, 2015Tradução . . Disponível em: https://doi.org/10.3390/s150409592. Acesso em: 18 nov. 2025.
    • APA

      Cavallari, M. R., Eirez Izquierdo, J. E., Braga, G. S., Dirani, E. A. T., Silva, M. de A. P. da, Gonzalez Rodríguez, E. F., & Fonseca, F. J. (2015). Enhanced sensitivity of gas sensor based on poly(3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring. Sensors, 15( 4), 9592-9609. doi:10.3390/s150409592
    • NLM

      Cavallari MR, Eirez Izquierdo JE, Braga GS, Dirani EAT, Silva M de AP da, Gonzalez Rodríguez EF, Fonseca FJ. Enhanced sensitivity of gas sensor based on poly(3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring [Internet]. Sensors. 2015 ; 15( 4): 9592-9609.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s150409592
    • Vancouver

      Cavallari MR, Eirez Izquierdo JE, Braga GS, Dirani EAT, Silva M de AP da, Gonzalez Rodríguez EF, Fonseca FJ. Enhanced sensitivity of gas sensor based on poly(3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring [Internet]. Sensors. 2015 ; 15( 4): 9592-9609.[citado 2025 nov. 18 ] Available from: https://doi.org/10.3390/s150409592

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025