Filtros : "Journal of Mathematical Analysis and Applications" "2025" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, SISTEMAS QUASE LINEARES, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SIMSEN, Jacson e SIMSEN, Mariza Stefanello. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, v. 547, n. 1, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129284. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, Simsen, J., & Simsen, M. S. (2025). Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, 547( 1), 1-30. doi:10.1016/j.jmaa.2025.129284
    • NLM

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
    • Vancouver

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Chao et al. On the phenomenon of topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, v. 546, n. artigo 129229, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129229. Acesso em: 16 nov. 2025.
    • APA

      Liang, C., Ren, X., Sun, W., & Vargas, E. (2025). On the phenomenon of topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, 546( artigo 129229), 1-13. doi:10.1016/j.jmaa.2025.129229
    • NLM

      Liang C, Ren X, Sun W, Vargas E. On the phenomenon of topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 546( artigo 129229): 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129229
    • Vancouver

      Liang C, Ren X, Sun W, Vargas E. On the phenomenon of topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 546( artigo 129229): 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129229
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, v. 541, n. artigo 128715, p. 1-15, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128715. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M. (2025). The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, 541( artigo 128715), 1-15. doi:10.1016/j.jmaa.2024.128715
    • NLM

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
    • Vancouver

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SINGULARIDADES, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129309. Acesso em: 16 nov. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2025). Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, 547( 2), 1-14. doi:10.1016/j.jmaa.2025.129309
    • NLM

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
    • Vancouver

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUACCHA-NEYRA, Jackeline et al. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129332. Acesso em: 16 nov. 2025.
    • APA

      Huaccha-Neyra, J., López-Lázaro, H., Rubio, O., & Takaessu Junior, C. R. (2025). Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, 547( 2), 1-30. doi:10.1016/j.jmaa.2025.129332
    • NLM

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
    • Vancouver

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES LINEARES, CALOR, ANÁLISE DE FOURIER, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARIAS JUNIOR, Alexandre e VICTOR, Bruno de Lessa. The Cauchy problem for a class of linear degenerate evolution equations on the torus. Journal of Mathematical Analysis and Applications, v. 542, n. 1, p. 1-38, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128751. Acesso em: 16 nov. 2025.
    • APA

      Arias Junior, A., & Victor, B. de L. (2025). The Cauchy problem for a class of linear degenerate evolution equations on the torus. Journal of Mathematical Analysis and Applications, 542( 1), 1-38. doi:10.1016/j.jmaa.2024.128751
    • NLM

      Arias Junior A, Victor B de L. The Cauchy problem for a class of linear degenerate evolution equations on the torus [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 542( 1): 1-38.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128751
    • Vancouver

      Arias Junior A, Victor B de L. The Cauchy problem for a class of linear degenerate evolution equations on the torus [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 542( 1): 1-38.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128751

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025