Filtros : "Journal of Mathematical Analysis and Applications" "Bezerra, Flank David Morais" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e PEREIRA, Antônio Luiz e DA SILVA, Severino H. Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms. Journal of Mathematical Analysis and Applications, v. 396, n. 2, p. 590-600, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2012.06.042. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Pereira, A. L., & da Silva, S. H. (2012). Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms. Journal of Mathematical Analysis and Applications, 396( 2), 590-600. doi:10.1016/j.jmaa.2012.06.042
    • NLM

      Bezerra FDM, Pereira AL, da Silva SH. Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 396( 2): 590-600.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2012.06.042
    • Vancouver

      Bezerra FDM, Pereira AL, da Silva SH. Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 396( 2): 590-600.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2012.06.042

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025