Filtros : "Journal of Mathematical Analysis and Applications" "ATRATORES" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, SISTEMAS QUASE LINEARES, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SIMSEN, Jacson e SIMSEN, Mariza Stefanello. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, v. 547, n. 1, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129284. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, Simsen, J., & Simsen, M. S. (2025). Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, 547( 1), 1-30. doi:10.1016/j.jmaa.2025.129284
    • NLM

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
    • Vancouver

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUACCHA-NEYRA, Jackeline et al. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129332. Acesso em: 16 nov. 2025.
    • APA

      Huaccha-Neyra, J., López-Lázaro, H., Rubio, O., & Takaessu Junior, C. R. (2025). Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, 547( 2), 1-30. doi:10.1016/j.jmaa.2025.129332
    • NLM

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
    • Vancouver

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, ATRATORES, MECÂNICA ESTATÍSTICA, ESPAÇOS DE SOBOLEV

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e ROIDOS, Nikolaos. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, v. 531, n. 2, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127851. Acesso em: 16 nov. 2025.
    • APA

      Lopes, P. T. P., & Roidos, N. (2024). Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities. Journal of Mathematical Analysis and Applications, 531( 2). doi:10.1016/j.jmaa.2023.127851
    • NLM

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
    • Vancouver

      Lopes PTP, Roidos N. Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127851
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 16 nov. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 16 nov. 2025.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Topological conjugation and asymptotic stability in impulsive semidynamical systems. Journal of Mathematical Analysis and Applications, v. 326, n. 2, p. 869-881, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2006.03.042. Acesso em: 16 nov. 2025.
    • APA

      Bonotto, E. de M., & Federson, M. (2007). Topological conjugation and asymptotic stability in impulsive semidynamical systems. Journal of Mathematical Analysis and Applications, 326( 2), 869-881. doi:10.1016/j.jmaa.2006.03.042
    • NLM

      Bonotto E de M, Federson M. Topological conjugation and asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 326( 2): 869-881.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2006.03.042
    • Vancouver

      Bonotto E de M, Federson M. Topological conjugation and asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 326( 2): 869-881.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2006.03.042

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025