Filtros : "Engineering Applications of Artificial Intelligence" "Financiado pelo CNPq" Limpar

Filtros



Refine with date range


  • Source: Engineering Applications of Artificial Intelligence. Unidades: EESC, ICMC

    Subjects: TOMADA DE DECISÃO, ANÁLISE DE DESEMPENHO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, v. 100, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2021.104205. Acesso em: 05 dez. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2021). An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, 100, 1-10. doi:10.1016/j.engappai.2021.104205
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
  • Source: Engineering Applications of Artificial Intelligence. Unidade: EP

    Subjects: GRANULOMETRIA, FEIJÃO, VISÃO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Sidnei Alves de e HAE, Yong Kim e PESSOTA, Jorge Henrique. Beans quality inspection using correlation-based granulometry. Engineering Applications of Artificial Intelligence, v. 40, p. 84-94, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2015.01.004. Acesso em: 05 dez. 2025.
    • APA

      Araújo, S. A. de, Hae, Y. K., & Pessota, J. H. (2015). Beans quality inspection using correlation-based granulometry. Engineering Applications of Artificial Intelligence, 40, 84-94. doi:10.1016/j.engappai.2015.01.004
    • NLM

      Araújo SA de, Hae YK, Pessota JH. Beans quality inspection using correlation-based granulometry [Internet]. Engineering Applications of Artificial Intelligence. 2015 ; 40 84-94.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.engappai.2015.01.004
    • Vancouver

      Araújo SA de, Hae YK, Pessota JH. Beans quality inspection using correlation-based granulometry [Internet]. Engineering Applications of Artificial Intelligence. 2015 ; 40 84-94.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.engappai.2015.01.004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025