Filtros : "2016" "Ucrânia" Limpar

Filtros



Refine with date range


  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ONGAY, Fausto et al. Normal subdigroups and the isomorphismtheorems for digroups. Algebra and Discrete Mathematics, v. 22, n. 2, p. 262–283, 2016Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191/pdf_1. Acesso em: 16 nov. 2024.
    • APA

      Ongay, F., Velásquez, R., Wills-Toro, L. A., & Futorny, V. (2016). Normal subdigroups and the isomorphismtheorems for digroups. Algebra and Discrete Mathematics, 22( 2), 262–283. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191/pdf_1
    • NLM

      Ongay F, Velásquez R, Wills-Toro LA, Futorny V. Normal subdigroups and the isomorphismtheorems for digroups [Internet]. Algebra and Discrete Mathematics. 2016 ; 22( 2): 262–283.[citado 2024 nov. 16 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191/pdf_1
    • Vancouver

      Ongay F, Velásquez R, Wills-Toro LA, Futorny V. Normal subdigroups and the isomorphismtheorems for digroups [Internet]. Algebra and Discrete Mathematics. 2016 ; 22( 2): 262–283.[citado 2024 nov. 16 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191/pdf_1
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 16 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 16 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 16 ] Available from: https://doi.org/10.3842/SIGMA.2016.103

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024