Filtros : "Journal of Mathematical Analysis and Applications" "ICMC" "Holanda" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCKEE, S. e CUMINATO, José Alberto. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, v. 423, n. 1, p. 243-252, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.09.067. Acesso em: 19 nov. 2024.
    • APA

      McKee, S., & Cuminato, J. A. (2015). Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, 423( 1), 243-252. doi:10.1016/j.jmaa.2014.09.067
    • NLM

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067
    • Vancouver

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: MECÂNICA DOS FLUÍDOS COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTTA, Vanessa Avansini et al. On the zeros of polynomials: an extension of the Eneström Kakeya theorem. Journal of Mathematical Analysis and Applications, v. 385, n. Ja 2012, p. 1151-1161, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2011.07.037. Acesso em: 19 nov. 2024.
    • APA

      Botta, V. A., Meneguette, M., Cuminato, J. A., & McKee, S. (2012). On the zeros of polynomials: an extension of the Eneström Kakeya theorem. Journal of Mathematical Analysis and Applications, 385( Ja 2012), 1151-1161. doi:10.1016/j.jmaa.2011.07.037
    • NLM

      Botta VA, Meneguette M, Cuminato JA, McKee S. On the zeros of polynomials: an extension of the Eneström Kakeya theorem [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 385( Ja 2012): 1151-1161.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2011.07.037
    • Vancouver

      Botta VA, Meneguette M, Cuminato JA, McKee S. On the zeros of polynomials: an extension of the Eneström Kakeya theorem [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 385( Ja 2012): 1151-1161.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2011.07.037
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, v. 390, n. ju 2012, p. 274-289, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2012.01.039. Acesso em: 19 nov. 2024.
    • APA

      Pimenta, M. T. O., & Soares, S. H. M. (2012). Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, 390( ju 2012), 274-289. doi:10.1016/j.jmaa.2012.01.039
    • NLM

      Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039
    • Vancouver

      Pimenta MTO, Soares SHM. Existence and concentration of solutions for a class of biharmonic equations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 390( ju 2012): 274-289.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2012.01.039
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MESQUITA, Jaqueline Godoy. Averaging for retarded functional differential equations. Journal of Mathematical Analysis and Applications, v. 382, n. 1, p. 77-85, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2011.04.034. Acesso em: 19 nov. 2024.
    • APA

      Federson, M., & Mesquita, J. G. (2011). Averaging for retarded functional differential equations. Journal of Mathematical Analysis and Applications, 382( 1), 77-85. doi:10.1016/j.jmaa.2011.04.034
    • NLM

      Federson M, Mesquita JG. Averaging for retarded functional differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 382( 1): 77-85.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.034
    • Vancouver

      Federson M, Mesquita JG. Averaging for retarded functional differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 382( 1): 77-85.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.034
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e SOUTO, Marco Aurélio Soares e SOARES, Sérgio Henrique Monari. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications, v. 377, n. 2, p. 584-592, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2010.11.031. Acesso em: 19 nov. 2024.
    • APA

      Alves, C. O., Souto, M. A. S., & Soares, S. H. M. (2011). Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications, 377( 2), 584-592. doi:10.1016/j.jmaa.2010.11.031
    • NLM

      Alves CO, Souto MAS, Soares SHM. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 377( 2): 584-592.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2010.11.031
    • Vancouver

      Alves CO, Souto MAS, Soares SHM. Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition [Internet]. Journal of Mathematical Analysis and Applications. 2011 ; 377( 2): 584-592.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2010.11.031
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for real-analytic involutive structures of tube type of corank one. Journal of Mathematical Analysis and Applications, v. 342, n. 1, p. 213-219, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2007.11.049. Acesso em: 19 nov. 2024.
    • APA

      Silva, E. R. da. (2008). Local solvability for real-analytic involutive structures of tube type of corank one. Journal of Mathematical Analysis and Applications, 342( 1), 213-219. doi:10.1016/j.jmaa.2007.11.049
    • NLM

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 342( 1): 213-219.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.049
    • Vancouver

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 342( 1): 213-219.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.049
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: APROXIMAÇÃO (TEORIA)

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e OLIVEIRA, C. P. e PERON, Ana Paula. Conditionally positive definite dot procuct kernels. Journal of Mathematical Analysis and Applications, v. 321, n. 1, p. 223-241, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2005.08.024. Acesso em: 19 nov. 2024.
    • APA

      Menegatto, V. A., Oliveira, C. P., & Peron, A. P. (2006). Conditionally positive definite dot procuct kernels. Journal of Mathematical Analysis and Applications, 321( 1), 223-241. doi:10.1016/j.jmaa.2005.08.024
    • NLM

      Menegatto VA, Oliveira CP, Peron AP. Conditionally positive definite dot procuct kernels [Internet]. Journal of Mathematical Analysis and Applications. 2006 ; 321( 1): 223-241.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2005.08.024
    • Vancouver

      Menegatto VA, Oliveira CP, Peron AP. Conditionally positive definite dot procuct kernels [Internet]. Journal of Mathematical Analysis and Applications. 2006 ; 321( 1): 223-241.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2005.08.024
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, Jan W. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. Journal of Mathematical Analysis and Applications, v. 310, n. 2, p. 557-578, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2005.02.024. Acesso em: 19 nov. 2024.
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2005). Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. Journal of Mathematical Analysis and Applications, 310( 2), 557-578. doi:10.1016/j.jmaa.2005.02.024
    • NLM

      Carvalho AN de, Cholewa JW. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2005 ; 310( 2): 557-578.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2005.02.024
    • Vancouver

      Carvalho AN de, Cholewa JW. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2005 ; 310( 2): 557-578.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2005.02.024
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VENTURA, Aldo. New approach to the method of nonlinear variation of parameters for a perturbed nonlinear neutral functional differential equation. Journal of Mathematical Analysis and Applications, v. 138, n. 1, p. 59-74, 1989Tradução . . Disponível em: https://doi.org/10.1016/0022-247X(89)90319-3. Acesso em: 19 nov. 2024.
    • APA

      Ventura, A. (1989). New approach to the method of nonlinear variation of parameters for a perturbed nonlinear neutral functional differential equation. Journal of Mathematical Analysis and Applications, 138( 1), 59-74. doi:10.1016/0022-247X(89)90319-3
    • NLM

      Ventura A. New approach to the method of nonlinear variation of parameters for a perturbed nonlinear neutral functional differential equation [Internet]. Journal of Mathematical Analysis and Applications. 1989 ; 138( 1): 59-74.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/0022-247X(89)90319-3
    • Vancouver

      Ventura A. New approach to the method of nonlinear variation of parameters for a perturbed nonlinear neutral functional differential equation [Internet]. Journal of Mathematical Analysis and Applications. 1989 ; 138( 1): 59-74.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/0022-247X(89)90319-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024