Filtros : "Financiado pela NSA" "IME" "Produção científica" Limpar

Filtros



Refine with date range


  • Source: Analysis Mathematica. Unidade: IME

    Subjects: ANÁLISE HARMÔNICA, ANÁLISE DE FOURIER

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESSIG, C. D et al. Tiling, circle packing and exponential sums over finite fields. Analysis Mathematica, v. 44, n. 4, p. 433–449, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10476-018-0606-1. Acesso em: 15 nov. 2024.
    • APA

      Haessig, C. D., Iosevich, A., Pakianathan, J., Robins, S., & Vaicunas, L. (2018). Tiling, circle packing and exponential sums over finite fields. Analysis Mathematica, 44( 4), 433–449. doi:10.1007/s10476-018-0606-1
    • NLM

      Haessig CD, Iosevich A, Pakianathan J, Robins S, Vaicunas L. Tiling, circle packing and exponential sums over finite fields [Internet]. Analysis Mathematica. 2018 ; 44( 4): 433–449.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10476-018-0606-1
    • Vancouver

      Haessig CD, Iosevich A, Pakianathan J, Robins S, Vaicunas L. Tiling, circle packing and exponential sums over finite fields [Internet]. Analysis Mathematica. 2018 ; 44( 4): 433–449.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10476-018-0606-1
  • Source: Journal of Combinatorial Theory, Serie A. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu et al. Turan's theorem for pseudo-random graphs. Journal of Combinatorial Theory, Serie A, v. 114, n. 4, p. 631-657, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jcta.2006.08.004. Acesso em: 15 nov. 2024.
    • APA

      Kohayakawa, Y., Rodl, V., Schacht, M., Sissokho, P., & Skokan, J. (2007). Turan's theorem for pseudo-random graphs. Journal of Combinatorial Theory, Serie A, 114( 4), 631-657. doi:10.1016/j.jcta.2006.08.004
    • NLM

      Kohayakawa Y, Rodl V, Schacht M, Sissokho P, Skokan J. Turan's theorem for pseudo-random graphs [Internet]. Journal of Combinatorial Theory, Serie A. 2007 ; 114( 4): 631-657.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jcta.2006.08.004
    • Vancouver

      Kohayakawa Y, Rodl V, Schacht M, Sissokho P, Skokan J. Turan's theorem for pseudo-random graphs [Internet]. Journal of Combinatorial Theory, Serie A. 2007 ; 114( 4): 631-657.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jcta.2006.08.004
  • Source: Proceedings of the National Academy of Sciences of the United States of America. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODL, Vojtech et al. The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 23, p. 8109-8113, 2005Tradução . . Disponível em: https://doi.org/10.1073/pnas.0502771102. Acesso em: 15 nov. 2024.
    • APA

      Rodl, V., Nagle, B., Skokan, J., Schatcht, M., & Kohayakawa, Y. (2005). The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, 102( 23), 8109-8113. doi:10.1073/pnas.0502771102
    • NLM

      Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1073/pnas.0502771102
    • Vancouver

      Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1073/pnas.0502771102
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics - GRACO. Unidade: IME

    Assunto: COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e SIMONOVITS, Maklós e SKOKAN, Jozef. The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2005.05.053. Acesso em: 15 nov. 2024. , 2005
    • APA

      Kohayakawa, Y., Simonovits, M., & Skokan, J. (2005). The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2005.05.053
    • NLM

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
    • Vancouver

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024