The hypergraph regularity method and its applications (2005)
- Authors:
- Autor USP: KOHAYAKAWA, YOSHIHARU - IME
- Unidade: IME
- DOI: 10.1073/pnas.0502771102
- Assunto: TEORIA DOS GRAFOS
- Keywords: Szemerédi’s theorem; regularity lemma; counting lemma; removal lemma
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Washington
- Date published: 2005
- Source:
- Título: Proceedings of the National Academy of Sciences of the United States of America
- ISSN: 0027-8424
- Volume/Número/Paginação/Ano: v. 102, n. 23, p. 8109-8113, 2005
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RODL, Vojtech et al. The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 23, p. 8109-8113, 2005Tradução . . Disponível em: https://doi.org/10.1073/pnas.0502771102. Acesso em: 23 jan. 2026. -
APA
Rodl, V., Nagle, B., Skokan, J., Schatcht, M., & Kohayakawa, Y. (2005). The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, 102( 23), 8109-8113. doi:10.1073/pnas.0502771102 -
NLM
Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1073/pnas.0502771102 -
Vancouver
Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1073/pnas.0502771102 - Almost spanning subgraphs of random graphs after adversarial edge removal
- The chromatic thresholds of graphs
- Near-perfect clique-factors in sparse pseudorandom graphs
- Percolation in high dimensions
- Measures of pseudorandomness for finite sequences: typical values
- Embedding graphs with bounded degree in sparse pseudorandom graphs
- On the resilience of long cycles in random graphs
- Evolution of random subgraphs of the cube
- On Richardson's model on the hypercube
- Universality and tolerance
Informações sobre o DOI: 10.1073/pnas.0502771102 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
