Filtros : "EBERT, MARCELO REMPEL" Removidos: "Brasil" "Escola Brasileira de Equações Diferenciais (EBED)" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Differential Equations and Applications No DEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge e NASCIMENTO, Wanderley Nunes do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, v. 31, n. 23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00909-0. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Marques, J., & Nascimento, W. N. do. (2024). The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, 31( 23). doi:10.1007/s00030-023-00909-0
    • NLM

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
    • Vancouver

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
  • Source: Differential and Integral Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA DA COMPUTAÇÃO, MASSA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASLAN, Halit Sevki e EBERT, Marcelo Rempel e REISSIG, Michael. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, v. 36, n. 5/6, p. 453-490, 2023Tradução . . Disponível em: https://doi.org/10.57262/die036-0506-453. Acesso em: 19 nov. 2024.
    • APA

      Aslan, H. S., Ebert, M. R., & Reissig, M. (2023). Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, 36( 5/6), 453-490. doi:10.57262/die036-0506-453
    • NLM

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 19 ] Available from: https://doi.org/10.57262/die036-0506-453
    • Vancouver

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 19 ] Available from: https://doi.org/10.57262/die036-0506-453
  • Source: Nonlinear Analysis: Real World Applications. Unidade: FFCLRP

    Subjects: PROBLEMA DE CAUCHY, MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, v. 71, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2023.103835. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2023). A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, 71. doi:10.1016/j.nonrwa.2023.103835
    • NLM

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
    • Vancouver

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, PROBLEMA DE CAUCHY, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, M. e EBERT, Marcelo Rempel. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, v. 215, p. [26] , 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112637. Acesso em: 19 nov. 2024.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2022). The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, 215, [26] . doi:10.1016/j.na.2021.112637
    • NLM

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.na.2021.112637
    • Vancouver

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.na.2021.112637
  • Source: Anomalies in Partial Differential Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. Anomalies in Partial Differential Equations. Tradução . Cham: Springer, 2021. . Disponível em: https://doi.org/10.1007/978-3-030-61346-4_11. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Marques, J. (2021). Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. In Anomalies in Partial Differential Equations. Cham: Springer. doi:10.1007/978-3-030-61346-4_11
    • NLM

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11
    • Vancouver

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11
  • Source: Asymptotic Analysis. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, Marcello e EBERT, Marcelo Rempel. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients. Asymptotic Analysis, v. 123, n. 1-2, p. 1-40, 2021Tradução . . Disponível em: https://doi.org/10.3233/ASY-201624. Acesso em: 19 nov. 2024.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2021). Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients. Asymptotic Analysis, 123( 1-2), 1-40. doi:10.3233/ASY-201624
    • NLM

      D’Abbicco M, Ebert MR. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients [Internet]. Asymptotic Analysis. 2021 ; 123( 1-2): 1-40.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3233/ASY-201624
    • Vancouver

      D’Abbicco M, Ebert MR. Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients [Internet]. Asymptotic Analysis. 2021 ; 123( 1-2): 1-40.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3233/ASY-201624
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, v. 504, n. 1, p. [28] , 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125393. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2021). Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, 504( 1), [28] . doi:10.1016/j.jmaa.2021.125393
    • NLM

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
    • Vancouver

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LUZ, Cleverson R. da e PALMA, Maíra F. G. The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, v. 27, n. 5, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00030-020-00644-w. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Luz, C. R. da, & Palma, M. F. G. (2020). The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, 27( 5). doi:10.1007/s00030-020-00644-w
    • NLM

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
    • Vancouver

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
  • Source: Mathematische Annalen. Unidade: FFCLRP

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e GIRARDI, G. e REISSIG, Michael. Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, v. 378, p. 1311-1326, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00208-019-01921-5. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Girardi, G., & Reissig, M. (2020). Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, 378, 1311-1326. doi:10.1007/s00208-019-01921-5
    • NLM

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00208-019-01921-5
    • Vancouver

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00208-019-01921-5
  • Source: New tools for nonlinear PDEs and application. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LOURENÇO, Linniker Monteiro. The critical exponent for evolution models with power non-linearity. New tools for nonlinear PDEs and application. Tradução . Cham: Birkhäuser, 2019. . Disponível em: https://doi.org/10.1007/978-3-030-10937-0_5. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Lourenço, L. M. (2019). The critical exponent for evolution models with power non-linearity. In New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0_5
    • NLM

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
    • Vancouver

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
  • Source: Journal of Fourier Analysis and Applications. Unidade: FFCLRP

    Subjects: TEORIA DAS EQUAÇÕES, FRAÇÕES CONTÍNUAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 696-731, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9627-1. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
  • Source: Abstracts. Conference titles: ISAAC Congress. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. About critical exponents in semi-linear de Sitter models. 2019, Anais.. Aveiro: ISAAC, 2019. Disponível em: http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R. (2019). About critical exponents in semi-linear de Sitter models. In Abstracts. Aveiro: ISAAC. Recuperado de http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
    • NLM

      Ebert MR. About critical exponents in semi-linear de Sitter models [Internet]. Abstracts. 2019 ;[citado 2024 nov. 19 ] Available from: http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
    • Vancouver

      Ebert MR. About critical exponents in semi-linear de Sitter models [Internet]. Abstracts. 2019 ;[citado 2024 nov. 19 ] Available from: http://isaac2019.web.ua.pt/Webpage/Welcome_files/abstracts-volume.pdf
  • Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      New tools for nonlinear PDEs and application. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-030-10937-0. Acesso em: 19 nov. 2024. , 2019
    • APA

      New tools for nonlinear PDEs and application. (2019). New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0
    • NLM

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
    • Vancouver

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-66456-9. Acesso em: 19 nov. 2024. , 2018
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
  • Source: Nonlinear Analysis : Real World Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, v. 40, p. 14-54, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2017.08.009. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2018). Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, 40, 14-54. doi:10.1016/j.nonrwa.2017.08.009
    • NLM

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009
    • Vancouver

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, p. 465-471, 2017Tradução . . Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 19 ]
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 19 ]
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. ISAAC Congress, 11th. . Växjö: ISAAC. . Acesso em: 19 nov. 2024. , 2017
    • APA

      Ebert, M. R. (2017). ISAAC Congress, 11th. Växjö: ISAAC.
    • NLM

      Ebert MR. ISAAC Congress, 11th. 2017 ;[citado 2024 nov. 19 ]
    • Vancouver

      Ebert MR. ISAAC Congress, 11th. 2017 ;[citado 2024 nov. 19 ]
  • Source: Trends in Mathemstics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e FITRIANA, L. e HIROSAWA, F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, p. 481-488, 2017Tradução . . Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2017). A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, 481-488.
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 19 ]
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 19 ]
  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, v. 23, n. 11-12, p. 847-888, 2017Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES NÃO LINEARES, PROBLEMA DE CAUCHY, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel e LUCENTE, S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, v. 40, p. 6480-6494, 2017Tradução . . Disponível em: https://doi.org/10.1002/mma.4469. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Lucente, S. (2017). Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, 40, 6480-6494. doi:10.1002/mma.4469
    • NLM

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mma.4469
    • Vancouver

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mma.4469

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024