Filtros : "EBERT, MARCELO REMPEL" "2018" Removido: "Japão" Limpar

Filtros



Limitar por data


  • Unidade: FFCLRP

    Assuntos: ANÁLISE MATEMÁTICA, GEOMETRIA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Symposium in Harmonic Analysis and Geometric Measure Theory. . Ribeirão Preto: DCM/FFCLRP/USP. . Acesso em: 19 nov. 2024. , 2018
    • APA

      Symposium in Harmonic Analysis and Geometric Measure Theory. (2018). Symposium in Harmonic Analysis and Geometric Measure Theory. Ribeirão Preto: DCM/FFCLRP/USP.
    • NLM

      Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;[citado 2024 nov. 19 ]
    • Vancouver

      Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;[citado 2024 nov. 19 ]
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-66456-9. Acesso em: 19 nov. 2024. , 2018
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
  • Fonte: Nonlinear Analysis : Real World Applications. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, v. 40, p. 14-54, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2017.08.009. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2018). Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, 40, 14-54. doi:10.1016/j.nonrwa.2017.08.009
    • NLM

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009
    • Vancouver

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024