Filtros : "EBERT, MARCELO REMPEL" "Suiça" Removido: "MATEMÁTICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Fourier Analysis and Applications. Unidade: FFCLRP

    Subjects: TEORIA DAS EQUAÇÕES, FRAÇÕES CONTÍNUAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 696-731, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9627-1. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-66456-9. Acesso em: 19 nov. 2024. , 2018
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, p. 465-471, 2017Tradução . . Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 19 ]
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 19 ]
  • Source: Trends in Mathemstics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e FITRIANA, L. e HIROSAWA, F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, p. 481-488, 2017Tradução . . Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2017). A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, 481-488.
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 19 ]
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 19 ]
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: FFCLRP

    Subjects: FUNÇÕES DE UMA VARIÁVEL COMPLEXA, OPERADORES PSEUDODIFERENCIAIS, SISTEMAS DISSIPATIVO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, v. 7, n. 2, p. 261-293, 2016Tradução . . Disponível em: https://doi.org/10.1007/s11868-015-0141-9. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2016). Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, 7( 2), 261-293. doi:10.1007/s11868-015-0141-9
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s11868-015-0141-9
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s11868-015-0141-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024