Filtros : "EBERT, MARCELO REMPEL" "Suiça" Limpar

Filtros



Refine with date range


  • Source: Anomalies in Partial Differential Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. Anomalies in Partial Differential Equations. Tradução . Cham: Springer, 2021. . Disponível em: https://doi.org/10.1007/978-3-030-61346-4_11. Acesso em: 06 nov. 2024.
    • APA

      Ebert, M. R., & Marques, J. (2021). Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed. In Anomalies in Partial Differential Equations. Cham: Springer. doi:10.1007/978-3-030-61346-4_11
    • NLM

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11
    • Vancouver

      Ebert MR, Marques J. Critical exponent for a class of semilinear damped wave equations with decaying in time propagation speed [Internet]. In: Anomalies in Partial Differential Equations. Cham: Springer; 2021. [citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-61346-4_11
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LUZ, Cleverson R. da e PALMA, Maíra F. G. The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, v. 27, n. 5, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00030-020-00644-w. Acesso em: 06 nov. 2024.
    • APA

      Ebert, M. R., Luz, C. R. da, & Palma, M. F. G. (2020). The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, 27( 5). doi:10.1007/s00030-020-00644-w
    • NLM

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
    • Vancouver

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
  • Source: New tools for nonlinear PDEs and application. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LOURENÇO, Linniker Monteiro. The critical exponent for evolution models with power non-linearity. New tools for nonlinear PDEs and application. Tradução . Cham: Birkhäuser, 2019. . Disponível em: https://doi.org/10.1007/978-3-030-10937-0_5. Acesso em: 06 nov. 2024.
    • APA

      Ebert, M. R., & Lourenço, L. M. (2019). The critical exponent for evolution models with power non-linearity. In New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0_5
    • NLM

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
    • Vancouver

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
  • Source: Journal of Fourier Analysis and Applications. Unidade: FFCLRP

    Subjects: TEORIA DAS EQUAÇÕES, FRAÇÕES CONTÍNUAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 696-731, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9627-1. Acesso em: 06 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
  • Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      New tools for nonlinear PDEs and application. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-030-10937-0. Acesso em: 06 nov. 2024. , 2019
    • APA

      New tools for nonlinear PDEs and application. (2019). New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0
    • NLM

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
    • Vancouver

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-66456-9. Acesso em: 06 nov. 2024. , 2018
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, p. 465-471, 2017Tradução . . Acesso em: 06 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 06 ]
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2024 nov. 06 ]
  • Source: Trends in Mathemstics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e FITRIANA, L. e HIROSAWA, F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, p. 481-488, 2017Tradução . . Acesso em: 06 nov. 2024.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2017). A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics, 481-488.
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 06 ]
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. A remark on the energy estimates for wave equations with integrable in time speed of propagation. Trends in Mathemstics. 2017 ; 481-488.[citado 2024 nov. 06 ]
  • Source: Journal of Pseudo-Differential Operators and Applications. Unidade: FFCLRP

    Subjects: FUNÇÕES DE UMA VARIÁVEL COMPLEXA, OPERADORES PSEUDODIFERENCIAIS, SISTEMAS DISSIPATIVO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, v. 7, n. 2, p. 261-293, 2016Tradução . . Disponível em: https://doi.org/10.1007/s11868-015-0141-9. Acesso em: 06 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2016). Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation. Journal of Pseudo-Differential Operators and Applications, 7( 2), 261-293. doi:10.1007/s11868-015-0141-9
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s11868-015-0141-9
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation [Internet]. Journal of Pseudo-Differential Operators and Applications. 2016 ; 7( 2): 261-293.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s11868-015-0141-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024