Filtros : "Piccione, Paolo" "1997" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Theory, Methods and Applications. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo. On the existence of light like geodesics on conformally stationary Lorentzian manifolds. Nonlinear Analysis. Theory, Methods and Applications, v. 28, n. 4, p. 611-623, 1997Tradução . . Disponível em: https://doi.org/10.1016/0362-546x(95)00178-x. Acesso em: 06 nov. 2024.
    • APA

      Piccione, P. (1997). On the existence of light like geodesics on conformally stationary Lorentzian manifolds. Nonlinear Analysis. Theory, Methods and Applications, 28( 4), 611-623. doi:10.1016/0362-546x(95)00178-x
    • NLM

      Piccione P. On the existence of light like geodesics on conformally stationary Lorentzian manifolds [Internet]. Nonlinear Analysis. Theory, Methods and Applications. 1997 ; 28( 4): 611-623.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/0362-546x(95)00178-x
    • Vancouver

      Piccione P. On the existence of light like geodesics on conformally stationary Lorentzian manifolds [Internet]. Nonlinear Analysis. Theory, Methods and Applications. 1997 ; 28( 4): 611-623.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/0362-546x(95)00178-x
  • Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PERLICK, Volker e PICCIONE, Paolo. The brachistochrone problem in arbitrary spacetimes. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/b01bf2bb-0617-4bb4-98c1-259df33ea85c/975803.pdf. Acesso em: 06 nov. 2024. , 1997
    • APA

      Perlick, V., & Piccione, P. (1997). The brachistochrone problem in arbitrary spacetimes. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/b01bf2bb-0617-4bb4-98c1-259df33ea85c/975803.pdf
    • NLM

      Perlick V, Piccione P. The brachistochrone problem in arbitrary spacetimes [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/b01bf2bb-0617-4bb4-98c1-259df33ea85c/975803.pdf
    • Vancouver

      Perlick V, Piccione P. The brachistochrone problem in arbitrary spacetimes [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/b01bf2bb-0617-4bb4-98c1-259df33ea85c/975803.pdf
  • Unidade: IME

    Assunto: RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e MASIELLO, Antônio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf. Acesso em: 06 nov. 2024. , 1997
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/c244782c-04f6-401e-aa53-761d3d412a46/975511.pdf
  • Source: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELL, Antonio e PICCIONE, Paolo. A variational theory for hight rays on Lorentz manifolds. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, v. 324, n. 10, p. 1093-1098, 1997Tradução . . Disponível em: https://doi.org/10.1016/s0764-4442(97)87893-7. Acesso em: 06 nov. 2024.
    • APA

      Giannoni, F., Masiell, A., & Piccione, P. (1997). A variational theory for hight rays on Lorentz manifolds. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 324( 10), 1093-1098. doi:10.1016/s0764-4442(97)87893-7
    • NLM

      Giannoni F, Masiell A, Piccione P. A variational theory for hight rays on Lorentz manifolds [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 1997 ; 324( 10): 1093-1098.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/s0764-4442(97)87893-7
    • Vancouver

      Giannoni F, Masiell A, Piccione P. A variational theory for hight rays on Lorentz manifolds [Internet]. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 1997 ; 324( 10): 1093-1098.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/s0764-4442(97)87893-7
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, v. 187, p. 375-415, 1997Tradução . . Disponível em: https://doi.org/10.1007/s002200050141. Acesso em: 06 nov. 2024.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, 187, 375-415. doi:10.1007/s002200050141
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s002200050141
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1007/s002200050141
  • Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e PICCIONE, Paolo e VERDERESI, José Antonio. An approach to the relativistic brachistochrone problem by sub-riemannian geometry. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/809b9f7f-8d72-4a94-9e58-a6b8a5bfda2a/975666.pdf. Acesso em: 06 nov. 2024. , 1997
    • APA

      Giannoni, F., Piccione, P., & Verderesi, J. A. (1997). An approach to the relativistic brachistochrone problem by sub-riemannian geometry. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/809b9f7f-8d72-4a94-9e58-a6b8a5bfda2a/975666.pdf
    • NLM

      Giannoni F, Piccione P, Verderesi JA. An approach to the relativistic brachistochrone problem by sub-riemannian geometry [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/809b9f7f-8d72-4a94-9e58-a6b8a5bfda2a/975666.pdf
    • Vancouver

      Giannoni F, Piccione P, Verderesi JA. An approach to the relativistic brachistochrone problem by sub-riemannian geometry [Internet]. 1997 ;[citado 2024 nov. 06 ] Available from: https://repositorio.usp.br/directbitstream/809b9f7f-8d72-4a94-9e58-a6b8a5bfda2a/975666.pdf
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: PROBLEMAS VARIACIONAIS, GEODÉSIA, TEOREMA DE EXISTÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e PICCIONE, Paolo e VERDERESI, Jose Antonio. An approach to the relativistic brachistochrone problem by sub-Riemannian geometry. Journal of Mathematical Physics, v. 28, n. 12, p. 6367-6381, 1997Tradução . . Disponível em: https://doi.org/10.1063/1.532217. Acesso em: 06 nov. 2024.
    • APA

      Giannoni, F., Piccione, P., & Verderesi, J. A. (1997). An approach to the relativistic brachistochrone problem by sub-Riemannian geometry. Journal of Mathematical Physics, 28( 12), 6367-6381. doi:10.1063/1.532217
    • NLM

      Giannoni F, Piccione P, Verderesi JA. An approach to the relativistic brachistochrone problem by sub-Riemannian geometry [Internet]. Journal of Mathematical Physics. 1997 ; 28( 12): 6367-6381.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1063/1.532217
    • Vancouver

      Giannoni F, Piccione P, Verderesi JA. An approach to the relativistic brachistochrone problem by sub-Riemannian geometry [Internet]. Journal of Mathematical Physics. 1997 ; 28( 12): 6367-6381.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1063/1.532217

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024