Clinical pathways and hierarchical clustering for tuberculosis treatment outcome prediction (2023)
Source: Procedia Computer Science. Unidades: FMRP, BIOENGENHARIA
Subjects: TUBERCULOSE, SAÚDE PÚBLICA, APRENDIZADO COMPUTACIONAL, REGISTROS MÉDICOS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
YAMAGUTI, Verena Hokino et al. Clinical pathways and hierarchical clustering for tuberculosis treatment outcome prediction. Procedia Computer Science, v. 219, p. 1373-1379, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.procs.2023.01.425. Acesso em: 10 nov. 2024.APA
Yamaguti, V. H., Freitas, A., Apunike, A. C., Rijo, R. P. C. L., Alves, D., & Netto, A. R. (2023). Clinical pathways and hierarchical clustering for tuberculosis treatment outcome prediction. Procedia Computer Science, 219, 1373-1379. doi:10.1016/j.procs.2023.01.425NLM
Yamaguti VH, Freitas A, Apunike AC, Rijo RPCL, Alves D, Netto AR. Clinical pathways and hierarchical clustering for tuberculosis treatment outcome prediction [Internet]. Procedia Computer Science. 2023 ; 219 1373-1379.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.procs.2023.01.425Vancouver
Yamaguti VH, Freitas A, Apunike AC, Rijo RPCL, Alves D, Netto AR. Clinical pathways and hierarchical clustering for tuberculosis treatment outcome prediction [Internet]. Procedia Computer Science. 2023 ; 219 1373-1379.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.procs.2023.01.425