Filtros : "SOLITONS" "Financiado pela FAPESP" Removido: "2011" Limpar

Filtros



Refine with date range


  • Source: Quarterly of Applied Mathematics. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e SAUT, Jean-Claude. Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, v. 78, n. 1, p. 75-105, 2020Tradução . . Disponível em: https://doi.org/10.1090/qam/1546. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Saut, J. -C. (2020). Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, 78( 1), 75-105. doi:10.1090/qam/1546
    • NLM

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
    • Vancouver

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
  • Source: Journal of High Energy Physics. Unidade: IFSC

    Subjects: SOLITONS, TEORIA QUÂNTICA DE CAMPO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e KLIMAS, P. e ZAKRZEWSKI, Wojtek J. Self-dual sectors for scalar eld theories in (1 + 1) dimensions. Journal of High Energy Physics, v. 2019, n. Ja 2019, p. 020-1-020-37, 2019Tradução . . Disponível em: https://doi.org/10.1007/JHEP01(2019)020. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, L. A., Klimas, P., & Zakrzewski, W. J. (2019). Self-dual sectors for scalar eld theories in (1 + 1) dimensions. Journal of High Energy Physics, 2019( Ja 2019), 020-1-020-37. doi:10.1007/JHEP01(2019)020
    • NLM

      Ferreira LA, Klimas P, Zakrzewski WJ. Self-dual sectors for scalar eld theories in (1 + 1) dimensions [Internet]. Journal of High Energy Physics. 2019 ; 2019( Ja 2019): 020-1-020-37.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/JHEP01(2019)020
    • Vancouver

      Ferreira LA, Klimas P, Zakrzewski WJ. Self-dual sectors for scalar eld theories in (1 + 1) dimensions [Internet]. Journal of High Energy Physics. 2019 ; 2019( Ja 2019): 020-1-020-37.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/JHEP01(2019)020
  • Source: Advances in Differential Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, v. 23, n. 11-12, p. 793-846, 2018Tradução . . Disponível em: https://doi.org/10.1177/1747954118808068. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Goloshchapova, N. (2018). Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, 23( 11-12), 793-846. doi:10.1177/1747954118808068
    • NLM

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068
    • Vancouver

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024