Exportar registro bibliográfico


Metrics:

Self-dual sectors for scalar eld theories in (1 + 1) dimensions (2019)

  • Authors:
  • USP affiliated authors: FERREIRA, LUIZ AGOSTINHO - IFSC
  • Unidades: IFSC
  • DOI: 10.1007/JHEP01(2019)020
  • Subjects: SOLITONS; TEORIA QUÂNTICA DE CAMPO
  • Keywords: Integrable field theories; Integrable hierarchies; Solitons monopoles and instantons
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaOnline source accessDOI
    Informações sobre o DOI: 10.1007/JHEP01(2019)020 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão PublicadaPROD028480_2921343.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA, Luiz Agostinho; KLIMAS, P.; ZAKRZEWSKI, Wojtek J. Self-dual sectors for scalar eld theories in (1 + 1) dimensions. Journal of High Energy Physics, Heidelberg, Springer, v. 2019, n. Ja 2019, p. 020-1-020-37, 2019. Disponível em: < http://dx.doi.org/10.1007/JHEP01(2019)020 > DOI: 10.1007/JHEP01(2019)020.
    • APA

      Ferreira, L. A., Klimas, P., & Zakrzewski, W. J. (2019). Self-dual sectors for scalar eld theories in (1 + 1) dimensions. Journal of High Energy Physics, 2019( Ja 2019), 020-1-020-37. doi:10.1007/JHEP01(2019)020
    • NLM

      Ferreira LA, Klimas P, Zakrzewski WJ. Self-dual sectors for scalar eld theories in (1 + 1) dimensions [Internet]. Journal of High Energy Physics. 2019 ; 2019( Ja 2019): 020-1-020-37.Available from: http://dx.doi.org/10.1007/JHEP01(2019)020
    • Vancouver

      Ferreira LA, Klimas P, Zakrzewski WJ. Self-dual sectors for scalar eld theories in (1 + 1) dimensions [Internet]. Journal of High Energy Physics. 2019 ; 2019( Ja 2019): 020-1-020-37.Available from: http://dx.doi.org/10.1007/JHEP01(2019)020

    Referências citadas na obra
    N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, (2004).
    Y.M. Shnir, Topological and Non-Topological Solitons in Scalar Field Theories, Cambridge University Press (2018).
    W.J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, (1989).
    E.B. Bogomolnyi, The stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449.
    M.K. Prasad and C.M. Sommerfield, An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760 [ INSPIRE ].
    C. Adam, L.A. Ferreira, E. da Hora, A. Wereszczynski and W.J. Zakrzewski, Some aspects of self-duality and generalised BPS theories, JHEP 08 (2013) 062 [ arXiv:1305.7239 ] [ INSPIRE ].
    C. Adam and F. Santamaria, The First-Order Euler-Lagrange equations and some of their uses, JHEP 12 (2016) 047 [ arXiv:1609.02154 ] [ INSPIRE ].
    A.M. Polyakov and A.A. Belavin, Metastable States of Two-Dimensional Isotropic Ferromagnets, JETP Lett. 22 (1975) 245 [ INSPIRE ].
    B.M. A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Multi-solitons in a two-dimensional Skyrme model, Z. Phys. C 65 (1995) 165 [ hep-th/9406160 ] [ INSPIRE ].
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [ arXiv:1001.4544 ] [ INSPIRE ].
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large N c, Phys. Rev. D 82 (2010) 085015 [ arXiv:1007.1567 ] [ INSPIRE ].
    L.A. Ferreira and W.J. Zakrzewski, A Skyrme-like model with an exact BPS bound, JHEP 09 (2013) 097 [ arXiv:1307.5856 ] [ INSPIRE ].
    L.A. Ferreira and Ya. Shnir, Exact Self-Dual Skyrmions, Phys. Lett. B 772 (2017) 621 [ arXiv:1704.04807 ] [ INSPIRE ].
    L.A. Ferreira, Exact self-duality in a modified Skyrme model, JHEP 07 (2017) 039 [ arXiv:1705.01824 ] [ INSPIRE ].
    Y. Amari and L.A. Ferreira, Self-dual Skyrmions on the spheres S 2N + 1, Phys. Rev. D 97 (2018) 085006 [ arXiv:1802.07271 ] [ INSPIRE ].
    D. Bazeia, M.J. dos Santos and R.F. Ribeiro, Solitons in systems of coupled scalar fields, Phys. Lett. A 208 (1995) 84 [ hep-th/0311265 ] [ INSPIRE ].
    T.J. Hollowood, J.L. Miramontes and Q.-H. Park, Massive integrable soliton theories, Nucl. Phys. B 445 (1995) 451 [ hep-th/9412062 ] [ INSPIRE ].
    M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Lond. Math. Soc. Lect. Note Ser. 149 (1991).
    A. Alonso-Izquierdo, Reflection, transmutation, annihilation and resonance in two-component kink collisions, Phys. Rev. D 97 (2018) 045016 [ arXiv:1711.10034 ] [ INSPIRE ].
    A. Alonso-Izquierdo, Kink dynamics in a system of two coupled scalar fields in two space-time dimensions, Physica D 365 (2018) 12 [ arXiv:1711.08784 ] [ INSPIRE ].
    M. Peyrard and D.K. Campbell, Kink Antikink Interactions In A Modified Sine-gordon Model, Physica D 9 (1983) 33.
    P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the ϕ 6 model, Phys. Rev. Lett. 107 (2011) 091602 [ arXiv:1101.5951 ] [ INSPIRE ].
    D. Bazeia, E. Belendryasova and V.A. Gani, Scattering of kinks of the sinh-deformed φ 4 model, Eur. Phys. J. C 78 (2018) 340 [ arXiv:1710.04993 ] [ INSPIRE ].
    Y.T. Kivshar and B.A. Malomed, Dynamics of Solitons in Nearly Integrable Systems, Rev. Mod. Phys. 61 (1989) 763 [ INSPIRE ].
    N.S. Manton, Force between Kinks with Long-range Tails, arXiv:1810.00788 [ INSPIRE ].
    N.S. Manton, Force between Kink and Antikink with Long-range Tails, arXiv:1810.03557 [ INSPIRE ].
    V.G. Ivancevic and T.T. Ivancevic, Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures, J. Geom. Symmetry Phys. 31 (2013) 1 [ arXiv:1305.0613 ].
    G. Delfino and G. Mussardo, Nonintegrable aspects of the multifrequency sine-Gordon model, Nucl. Phys. B 516 (1998) 675 [ hep-th/9709028 ] [ INSPIRE ].
    L.A. Ferreira and W.J. Zakrzewski, The concept of quasi-integrability: a concrete example, JHEP 05 (2011) 130 [ arXiv:1011.2176 ] [ INSPIRE ].
    L.A. Ferreira, P. Klimas and W.J. Zakrzewski, Quasi-integrable deformations of the SU(3) Affine Toda Theory, JHEP 05 (2016) 065 [ arXiv:1602.02003 ] [ INSPIRE ].

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020