Filtros : "SOLITONS" "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: General Relativity and Gravitation. Unidades: IFSC, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLITONS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA FILHO, Etevaldo dos Santos e GUIMARAES, Angelo e CABRERA-MUNGUIA, I. The relations between the multipole moments in axistationary electrovacuum spacetimes and the N-soliton solution. General Relativity and Gravitation, v. 54, n. Ja 2022, p. 15-1-15-28, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10714-022-02903-w. Acesso em: 15 nov. 2024.
    • APA

      Costa Filho, E. dos S., Guimaraes, A., & Cabrera-Munguia, I. (2022). The relations between the multipole moments in axistationary electrovacuum spacetimes and the N-soliton solution. General Relativity and Gravitation, 54( Ja 2022), 15-1-15-28. doi:10.1007/s10714-022-02903-w
    • NLM

      Costa Filho E dos S, Guimaraes A, Cabrera-Munguia I. The relations between the multipole moments in axistationary electrovacuum spacetimes and the N-soliton solution [Internet]. General Relativity and Gravitation. 2022 ; 54( Ja 2022): 15-1-15-28.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10714-022-02903-w
    • Vancouver

      Costa Filho E dos S, Guimaraes A, Cabrera-Munguia I. The relations between the multipole moments in axistationary electrovacuum spacetimes and the N-soliton solution [Internet]. General Relativity and Gravitation. 2022 ; 54( Ja 2022): 15-1-15-28.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10714-022-02903-w
  • Source: Journal of Nonlinear Science. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e PLAZA, Ramón G. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction. Journal of Nonlinear Science, v. 31, n. 3, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00332-021-09711-7. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Plaza, R. G. (2021). Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction. Journal of Nonlinear Science, 31( 3). doi:10.1007/s00332-021-09711-7
    • NLM

      Pava JA, Plaza RG. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction [Internet]. Journal of Nonlinear Science. 2021 ; 31( 3):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00332-021-09711-7
    • Vancouver

      Pava JA, Plaza RG. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction [Internet]. Journal of Nonlinear Science. 2021 ; 31( 3):[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s00332-021-09711-7
  • Source: Quarterly of Applied Mathematics. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e SAUT, Jean-Claude. Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, v. 78, n. 1, p. 75-105, 2020Tradução . . Disponível em: https://doi.org/10.1090/qam/1546. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Saut, J. -C. (2020). Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, 78( 1), 75-105. doi:10.1090/qam/1546
    • NLM

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
    • Vancouver

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
  • Source: Advances in Differential Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, v. 23, n. 11-12, p. 793-846, 2018Tradução . . Disponível em: https://doi.org/10.1177/1747954118808068. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Goloshchapova, N. (2018). Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, 23( 11-12), 793-846. doi:10.1177/1747954118808068
    • NLM

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068
    • Vancouver

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068
  • Source: Nagoya Mathematical Journal. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e BANQUET BRANGO, Carlos Alberto. Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, v. 219, p. 235-268, 2015Tradução . . Disponível em: https://doi.org/10.1215/00277630-2891870. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Banquet Brango, C. A. (2015). Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, 219, 235-268. doi:10.1215/00277630-2891870
    • NLM

      Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/00277630-2891870
    • Vancouver

      Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/00277630-2891870
  • Source: Physical Review D. Unidade: IFSC

    Subjects: SOLITONS, ENERGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRIHAYE, Yves et al. From topological to nontopological solitons: kinks, domain walls, and Q-balls in a scalar field model with a nontrivial vacuum manifold. Physical Review D, v. 92, n. 12, p. 124061-1-124061-13, 2015Tradução . . Disponível em: https://doi.org/10.1103/PhysRevD.92.124061. Acesso em: 15 nov. 2024.
    • APA

      Brihaye, Y., Cisterna, A., Hartmann, B., & Luchini, G. (2015). From topological to nontopological solitons: kinks, domain walls, and Q-balls in a scalar field model with a nontrivial vacuum manifold. Physical Review D, 92( 12), 124061-1-124061-13. doi:10.1103/PhysRevD.92.124061
    • NLM

      Brihaye Y, Cisterna A, Hartmann B, Luchini G. From topological to nontopological solitons: kinks, domain walls, and Q-balls in a scalar field model with a nontrivial vacuum manifold [Internet]. Physical Review D. 2015 ; 92( 12): 124061-1-124061-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.92.124061
    • Vancouver

      Brihaye Y, Cisterna A, Hartmann B, Luchini G. From topological to nontopological solitons: kinks, domain walls, and Q-balls in a scalar field model with a nontrivial vacuum manifold [Internet]. Physical Review D. 2015 ; 92( 12): 124061-1-124061-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.92.124061
  • Source: Book of Abstracts. Conference titles: International Conference on Atomic Physics - ICAP. Unidade: IFSC

    Subjects: CONDENSADO DE BOSE-EINSTEIN, SOLITONS, VÓRTICES DOS FLUÍDOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMAIRA, André de Freitas e CARACANHAS, Mônica Andrioli e BAGNATO, Vanderlei Salvador. BEC dynamics with solitons and vortices. 2014, Anais.. College Park: University of Maryland, Joint Quantum Institute, JQI, 2014. Disponível em: http://icap2014.org/sites/icap2014.org/files/poster_abstracts_tuesday.pdf. Acesso em: 15 nov. 2024.
    • APA

      Smaira, A. de F., Caracanhas, M. A., & Bagnato, V. S. (2014). BEC dynamics with solitons and vortices. In Book of Abstracts. College Park: University of Maryland, Joint Quantum Institute, JQI. Recuperado de http://icap2014.org/sites/icap2014.org/files/poster_abstracts_tuesday.pdf
    • NLM

      Smaira A de F, Caracanhas MA, Bagnato VS. BEC dynamics with solitons and vortices [Internet]. Book of Abstracts. 2014 ;[citado 2024 nov. 15 ] Available from: http://icap2014.org/sites/icap2014.org/files/poster_abstracts_tuesday.pdf
    • Vancouver

      Smaira A de F, Caracanhas MA, Bagnato VS. BEC dynamics with solitons and vortices [Internet]. Book of Abstracts. 2014 ;[citado 2024 nov. 15 ] Available from: http://icap2014.org/sites/icap2014.org/files/poster_abstracts_tuesday.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA ASSINTÓTICA, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Orlando Francisco. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, n. 153, p. 9 , 2014Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html. Acesso em: 15 nov. 2024.
    • APA

      Lopes, O. F. (2014). Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, ( 153), 9 . Recuperado de http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
    • NLM

      Lopes OF. Stability of solitary waves for a three-wave interaction model [Internet]. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2024 nov. 15 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
    • Vancouver

      Lopes OF. Stability of solitary waves for a three-wave interaction model [Internet]. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2024 nov. 15 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
  • Source: Physical Review D. Unidade: IFSC

    Subjects: SOLITONS, FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e KLIMAS, P. e ZAKRZEWSKI, W. J. Some (3+1)-dimensional vortex solutions of the C'P POT. N' model. Physical Review D, v. 83, n. 10, p. 105018-1-105018-7, 2011Tradução . . Disponível em: https://doi.org/10.1103/PhysRevD.83.105018. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, L. A., Klimas, P., & Zakrzewski, W. J. (2011). Some (3+1)-dimensional vortex solutions of the C'P POT. N' model. Physical Review D, 83( 10), 105018-1-105018-7. doi:10.1103/PhysRevD.83.105018
    • NLM

      Ferreira LA, Klimas P, Zakrzewski WJ. Some (3+1)-dimensional vortex solutions of the C'P POT. N' model [Internet]. Physical Review D. 2011 ; 83( 10): 105018-1-105018-7.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.83.105018
    • Vancouver

      Ferreira LA, Klimas P, Zakrzewski WJ. Some (3+1)-dimensional vortex solutions of the C'P POT. N' model [Internet]. Physical Review D. 2011 ; 83( 10): 105018-1-105018-7.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.83.105018
  • Source: Physical Review D. Unidade: IFSC

    Subjects: SOLITONS, FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e KLIMAS, P. e ZAKRZEWSKI, W. J. Properties of some (3+1)-dimensional vortex solutions of the C'P POT. N' model. Physical Review D, v. 84, n. 8, p. 085022-1-085022-10, 2011Tradução . . Disponível em: https://doi.org/10.1103/PhysRevD.84.085022. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, L. A., Klimas, P., & Zakrzewski, W. J. (2011). Properties of some (3+1)-dimensional vortex solutions of the C'P POT. N' model. Physical Review D, 84( 8), 085022-1-085022-10. doi:10.1103/PhysRevD.84.085022
    • NLM

      Ferreira LA, Klimas P, Zakrzewski WJ. Properties of some (3+1)-dimensional vortex solutions of the C'P POT. N' model [Internet]. Physical Review D. 2011 ; 84( 8): 085022-1-085022-10.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.84.085022
    • Vancouver

      Ferreira LA, Klimas P, Zakrzewski WJ. Properties of some (3+1)-dimensional vortex solutions of the C'P POT. N' model [Internet]. Physical Review D. 2011 ; 84( 8): 085022-1-085022-10.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/PhysRevD.84.085022
  • Source: SIAM Journal on Mathematical Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLITONS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e NATALI, Fábio. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM Journal on Mathematical Analysis, v. 40, n. 3, p. 1123-1151, 2008Tradução . . Disponível em: https://doi.org/10.1137/080718450. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Natali, F. (2008). Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM Journal on Mathematical Analysis, 40( 3), 1123-1151. doi:10.1137/080718450
    • NLM

      Pava JA, Natali F. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions [Internet]. SIAM Journal on Mathematical Analysis. 2008 ; 40( 3): 1123-1151.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1137/080718450
    • Vancouver

      Pava JA, Natali F. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions [Internet]. SIAM Journal on Mathematical Analysis. 2008 ; 40( 3): 1123-1151.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1137/080718450
  • Source: Physical Review E. Unidade: IFSC

    Subjects: FÍSICA MATEMÁTICA, SOLITONS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e PIETTE, Bernard e ZAKRZEWSKI, Wojtek J. Wobbles and other kink-breather solutions of the sine-Gordon model. Physical Review E, v. 77, n. 3, p. 036613-1-036613-9, 2008Tradução . . Disponível em: https://doi.org/10.1103/physreve.77.036613. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, L. A., Piette, B., & Zakrzewski, W. J. (2008). Wobbles and other kink-breather solutions of the sine-Gordon model. Physical Review E, 77( 3), 036613-1-036613-9. doi:10.1103/physreve.77.036613
    • NLM

      Ferreira LA, Piette B, Zakrzewski WJ. Wobbles and other kink-breather solutions of the sine-Gordon model [Internet]. Physical Review E. 2008 ; 77( 3): 036613-1-036613-9.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/physreve.77.036613
    • Vancouver

      Ferreira LA, Piette B, Zakrzewski WJ. Wobbles and other kink-breather solutions of the sine-Gordon model [Internet]. Physical Review E. 2008 ; 77( 3): 036613-1-036613-9.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1103/physreve.77.036613

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024