Filtros : "MECÂNICA ESTATÍSTICA" "Journal of Mathematical Physics" Removido: "1994" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MATERIAIS MAGNÉTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Roberto et al. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, v. 62, n. artigo 103301, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1063/5.0020757. Acesso em: 03 nov. 2025.
    • APA

      Fernández, R., González-Navarrete, M., Pechersky, E., & Yambartsev, A. (2021). Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, 62( artigo 103301), 1-13. doi:10.1063/5.0020757
    • NLM

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/5.0020757
    • Vancouver

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/5.0020757
  • Source: Journal of Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA, TEORIA QUÂNTICA DE CAMPO, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA), ÁLGEBRAS DE VON NEUMANN

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA DA SILVA, R. Perturbations of KMS states and noncommutative Lp -spaces. Journal of Mathematical Physics, v. 60, 2019Tradução . . Disponível em: https://doi.org/10.1063/1.5099066. Acesso em: 03 nov. 2025.
    • APA

      Correa da Silva, R. (2019). Perturbations of KMS states and noncommutative Lp -spaces. Journal of Mathematical Physics, 60. doi:10.1063/1.5099066
    • NLM

      Correa da Silva R. Perturbations of KMS states and noncommutative Lp -spaces [Internet]. Journal of Mathematical Physics. 2019 ; 60[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.5099066
    • Vancouver

      Correa da Silva R. Perturbations of KMS states and noncommutative Lp -spaces [Internet]. Journal of Mathematical Physics. 2019 ; 60[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.5099066
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, Gunter M. Self-duality for the two-component asymmetric simple exclusion process. Journal of Mathematical Physics, v. 56, n. 8, p. [20 ], 2015Tradução . . Disponível em: https://doi.org/10.1063/1.4929663. Acesso em: 03 nov. 2025.
    • APA

      Belitsky, V., & Schutz, G. M. (2015). Self-duality for the two-component asymmetric simple exclusion process. Journal of Mathematical Physics, 56( 8), [20 ]. doi:10.1063/1.4929663
    • NLM

      Belitsky V, Schutz GM. Self-duality for the two-component asymmetric simple exclusion process [Internet]. Journal of Mathematical Physics. 2015 ; 56( 8): [20 ].[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4929663
    • Vancouver

      Belitsky V, Schutz GM. Self-duality for the two-component asymmetric simple exclusion process [Internet]. Journal of Mathematical Physics. 2015 ; 56( 8): [20 ].[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4929663
  • Source: Journal of Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Juan et al. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, v. 54, n. 6, p. 1-17, 2013Tradução . . Disponível em: https://doi.org/10.1063/1.4808101. Acesso em: 03 nov. 2025.
    • APA

      Hernandez, J., Suhov, Y., Iambartsev, A., & Zohren, S. (2013). Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, 54( 6), 1-17. doi:10.1063/1.4808101
    • NLM

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4808101
    • Vancouver

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4808101
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e PAUFLER, Cornelius e RÖMER, Hartmann. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics, v. 46, n. 11, p. 1-29, 2005Tradução . . Disponível em: https://doi.org/10.1063/1.2116320. Acesso em: 03 nov. 2025.
    • APA

      Forger, F. M., Paufler, C., & Römer, H. (2005). Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics, 46( 11), 1-29. doi:10.1063/1.2116320
    • NLM

      Forger FM, Paufler C, Römer H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory [Internet]. Journal of Mathematical Physics. 2005 ; 46( 11): 1-29.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.2116320
    • Vancouver

      Forger FM, Paufler C, Römer H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory [Internet]. Journal of Mathematical Physics. 2005 ; 46( 11): 1-29.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.2116320

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025