Filtros : "MECÂNICA ESTATÍSTICA" "Communications in Mathematical Physics" Removido: "Financiado pelo CNR" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 03 nov. 2025.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 03 nov. 2025.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02099437
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: PROCESSOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NEVES, Eduardo Jordão e SCHONMANN, Roberto Henrique. Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, v. 137, p. 209-230, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02431878. Acesso em: 03 nov. 2025.
    • APA

      Neves, E. J., & Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, 137, 209-230. doi:10.1007/BF02431878
    • NLM

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02431878
    • Vancouver

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02431878
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, n. 140, p. 133-147, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02099294. Acesso em: 03 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1991). Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, ( 140), 133-147. doi:10.1007/BF02099294
    • NLM

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02099294
    • Vancouver

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF02099294
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, n. 124, p. 285-299, 1989Tradução . . Disponível em: https://doi.org/10.1007/BF01219198. Acesso em: 03 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1989). A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, ( 124), 285-299. doi:10.1007/BF01219198
    • NLM

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF01219198
    • Vancouver

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/BF01219198
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHONMANN, Roberto Henrique. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Communications in Mathematical Physics, v. 112, p. 409-22, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01218484. Acesso em: 03 nov. 2025.
    • APA

      Schonmann, R. H. (1987). Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Communications in Mathematical Physics, 112, 409-22. doi:10.1007/bf01218484
    • NLM

      Schonmann RH. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region [Internet]. Communications in Mathematical Physics. 1987 ;112 409-22.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/bf01218484
    • Vancouver

      Schonmann RH. Second order large deviation estimates for ferromagnetic systems in the phase coexistence region [Internet]. Communications in Mathematical Physics. 1987 ;112 409-22.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/bf01218484
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio et al. Nonequilibrium measures which exhibit a temperature gradient: Study of a model. Communications in Mathematical Physics, v. 81, n. 1, p. 127-147, 1981Tradução . . Disponível em: https://doi.org/10.1007/bf01941803. Acesso em: 03 nov. 2025.
    • APA

      Galves, A., Kipnis, C., Marchioro, C., & Presutti, E. (1981). Nonequilibrium measures which exhibit a temperature gradient: Study of a model. Communications in Mathematical Physics, 81( 1), 127-147. doi:10.1007/bf01941803
    • NLM

      Galves A, Kipnis C, Marchioro C, Presutti E. Nonequilibrium measures which exhibit a temperature gradient: Study of a model [Internet]. Communications in Mathematical Physics. 1981 ; 81( 1): 127-147.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/bf01941803
    • Vancouver

      Galves A, Kipnis C, Marchioro C, Presutti E. Nonequilibrium measures which exhibit a temperature gradient: Study of a model [Internet]. Communications in Mathematical Physics. 1981 ; 81( 1): 127-147.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/bf01941803

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025