Filtros : "MECÂNICA ESTATÍSTICA" "Brazilian Journal of Probability and Statistics" Removido: "Financiado pela NSFC" Limpar

Filtros



Refine with date range


  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: PROCESSOS ALEATÓRIOS, PROCESSOS DE RAMIFICAÇÃO, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V. e MACHADO, Fábio Prates e RAVISHANKAR, Krishnamurthi. The cone percolation model on Galton–Watson and on spherically symmetric trees. Brazilian Journal of Probability and Statistics, v. 34, n. 3, p. 594-612, 2020Tradução . . Disponível em: https://doi.org/10.1214/19-BJPS441. Acesso em: 03 nov. 2025.
    • APA

      Junior, V. V., Machado, F. P., & Ravishankar, K. (2020). The cone percolation model on Galton–Watson and on spherically symmetric trees. Brazilian Journal of Probability and Statistics, 34( 3), 594-612. doi:10.1214/19-BJPS441
    • NLM

      Junior VV, Machado FP, Ravishankar K. The cone percolation model on Galton–Watson and on spherically symmetric trees [Internet]. Brazilian Journal of Probability and Statistics. 2020 ; 34( 3): 594-612.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/19-BJPS441
    • Vancouver

      Junior VV, Machado FP, Ravishankar K. The cone percolation model on Galton–Watson and on spherically symmetric trees [Internet]. Brazilian Journal of Probability and Statistics. 2020 ; 34( 3): 594-612.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/19-BJPS441
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PASSEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna e FERRARI, Pablo Augusto. Separation versus diffusion in a two species system. Brazilian Journal of Probability and Statistics, v. 29, n. 2, p. 387-412, 2015Tradução . . Disponível em: https://doi.org/10.1214/14-BJPS276. Acesso em: 03 nov. 2025.
    • APA

      De Masi, A., & Ferrari, P. A. (2015). Separation versus diffusion in a two species system. Brazilian Journal of Probability and Statistics, 29( 2), 387-412. doi:10.1214/14-BJPS276
    • NLM

      De Masi A, Ferrari PA. Separation versus diffusion in a two species system [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 387-412.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/14-BJPS276
    • Vancouver

      De Masi A, Ferrari PA. Separation versus diffusion in a two species system [Internet]. Brazilian Journal of Probability and Statistics. 2015 ; 29( 2): 387-412.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/14-BJPS276
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 03 nov. 2025.
    • APA

      Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222
    • NLM

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/13-BJPS222
    • Vancouver

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/13-BJPS222

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025