Filtros : "ESTRUTURA ELETRÔNICA" "Estados Unidos" Removido: "LI, MAXIMO SIU" Limpar

Filtros



Limitar por data


  • Fonte: ACS Applied Electronic Materials. Unidade: IQSC

    Assuntos: POLÍMEROS (QUÍMICA ORGÂNICA), ESTRUTURA ELETRÔNICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Francis Dayan Rivas et al. Interplay between optical and electronic characteristics of castor oil-derived hybrid polymers. ACS Applied Electronic Materials, v. 7, n. 17, p. 8034–8044, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsaelm.5c00826. Acesso em: 09 nov. 2025.
    • APA

      Garcia, F. D. R., Nieto, E. F. P., Onishi, B. S. D., Santos, R. B., Freitas, B. D. de, Santos, A. dos, et al. (2025). Interplay between optical and electronic characteristics of castor oil-derived hybrid polymers. ACS Applied Electronic Materials, 7( 17), 8034–8044. doi:10.1021/acsaelm.5c00826
    • NLM

      Garcia FDR, Nieto EFP, Onishi BSD, Santos RB, Freitas BD de, Santos A dos, Manzani D, Bueno PR, Ribeiro SJL. Interplay between optical and electronic characteristics of castor oil-derived hybrid polymers [Internet]. ACS Applied Electronic Materials. 2025 ; 7( 17): 8034–8044.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acsaelm.5c00826
    • Vancouver

      Garcia FDR, Nieto EFP, Onishi BSD, Santos RB, Freitas BD de, Santos A dos, Manzani D, Bueno PR, Ribeiro SJL. Interplay between optical and electronic characteristics of castor oil-derived hybrid polymers [Internet]. ACS Applied Electronic Materials. 2025 ; 7( 17): 8034–8044.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acsaelm.5c00826
  • Fonte: Journal of Computational Chemistry. Unidade: IQSC

    Assuntos: ESTRUTURA ELETRÔNICA, CÉSIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSMÃO, Eriosvaldo Florentino e HAIDUKE, Roberto Luiz Andrade. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for cesium through radon. Journal of Computational Chemistry, v. 44, p. 2478–2485, 2023Tradução . . Disponível em: https://doi.org/10.1002/jcc.27212. Acesso em: 09 nov. 2025.
    • APA

      Gusmão, E. F., & Haiduke, R. L. A. (2023). Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for cesium through radon. Journal of Computational Chemistry, 44, 2478–2485. doi:10.1002/jcc.27212
    • NLM

      Gusmão EF, Haiduke RLA. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for cesium through radon [Internet]. Journal of Computational Chemistry. 2023 ;44 2478–2485.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/jcc.27212
    • Vancouver

      Gusmão EF, Haiduke RLA. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for cesium through radon [Internet]. Journal of Computational Chemistry. 2023 ;44 2478–2485.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/jcc.27212
  • Fonte: Physical Review Research. Unidade: IF

    Assuntos: MATERIAIS, MATERIAIS MAGNÉTICOS, ESTRUTURA ELETRÔNICA, FERROMAGNETISMO, MEDIDA DE LEBESGUE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAGERER, Philipp e MORELHÃO, Sérgio Luiz. Two-dimensional ferromagnetic extension of a topological insulator. Physical Review Research, v. 5, n. 2, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevResearch.5.L022019. Acesso em: 09 nov. 2025.
    • APA

      Kagerer, P., & Morelhão, S. L. (2023). Two-dimensional ferromagnetic extension of a topological insulator. Physical Review Research, 5( 2). doi:10.1103/PhysRevResearch.5.L022019
    • NLM

      Kagerer P, Morelhão SL. Two-dimensional ferromagnetic extension of a topological insulator [Internet]. Physical Review Research. 2023 ; 5( 2):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevResearch.5.L022019
    • Vancouver

      Kagerer P, Morelhão SL. Two-dimensional ferromagnetic extension of a topological insulator [Internet]. Physical Review Research. 2023 ; 5( 2):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevResearch.5.L022019
  • Fonte: The Journal of Physical Chemistry A. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, FÍSICA MOLECULAR

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Savio et al. Role of the solvent and intramolecular hydrogen bonds in the antioxidative mechanism of prenylisoflavone from leaves of vatairea guianensis. The Journal of Physical Chemistry A, v. 127, n. 51, p. 10807-10816, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jpca.3c05725. Acesso em: 09 nov. 2025.
    • APA

      Fonseca, S., Santos, N. S. S. dos, Torres, A. M., Siqueira, M., Cunha, A. da, Manzoni, V., et al. (2023). Role of the solvent and intramolecular hydrogen bonds in the antioxidative mechanism of prenylisoflavone from leaves of vatairea guianensis. The Journal of Physical Chemistry A, 127( 51), 10807-10816. doi:10.1021/acs.jpca.3c05725
    • NLM

      Fonseca S, Santos NSS dos, Torres AM, Siqueira M, Cunha A da, Manzoni V, Provasi PF, Gester R do M, Canuto SRA. Role of the solvent and intramolecular hydrogen bonds in the antioxidative mechanism of prenylisoflavone from leaves of vatairea guianensis [Internet]. The Journal of Physical Chemistry A. 2023 ; 127( 51): 10807-10816.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpca.3c05725
    • Vancouver

      Fonseca S, Santos NSS dos, Torres AM, Siqueira M, Cunha A da, Manzoni V, Provasi PF, Gester R do M, Canuto SRA. Role of the solvent and intramolecular hydrogen bonds in the antioxidative mechanism of prenylisoflavone from leaves of vatairea guianensis [Internet]. The Journal of Physical Chemistry A. 2023 ; 127( 51): 10807-10816.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpca.3c05725
  • Fonte: Physical Review B. Unidades: IF, IQ

    Assuntos: FÍSICO-QUÍMICA, FÍSICA MODERNA, ESPECTROSCOPIA DE RAIO X, ESTRUTURA ELETRÔNICA, QUÍMICA QUÂNTICA, SUPERCONDUTIVIDADE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIGUEIREDO, Alvaro Godoy de et al. Orbital localization and the role of the Fe and As 4 p orbitals in BaFe 2 As 2 probed by XANES. Physical Review B, v. 105, n. 4, 2022Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.105.045130. Acesso em: 09 nov. 2025.
    • APA

      Figueiredo, A. G. de, Cantarino, M. dos R., Silva Neto,, Pakuszewski, K. R., Grossi, R. M., Christovam, D. S., et al. (2022). Orbital localization and the role of the Fe and As 4 p orbitals in BaFe 2 As 2 probed by XANES. Physical Review B, 105( 4). doi:10.1103/PhysRevB.105.045130
    • NLM

      Figueiredo AG de, Cantarino M dos R, Silva Neto, Pakuszewski KR, Grossi RM, Christovam DS, Souza J, Piva MM, Freitas GS, Pagliuso PG, Adriano C, Garcia FA. Orbital localization and the role of the Fe and As 4 p orbitals in BaFe 2 As 2 probed by XANES [Internet]. Physical Review B. 2022 ; 105( 4):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.105.045130
    • Vancouver

      Figueiredo AG de, Cantarino M dos R, Silva Neto, Pakuszewski KR, Grossi RM, Christovam DS, Souza J, Piva MM, Freitas GS, Pagliuso PG, Adriano C, Garcia FA. Orbital localization and the role of the Fe and As 4 p orbitals in BaFe 2 As 2 probed by XANES [Internet]. Physical Review B. 2022 ; 105( 4):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.105.045130
  • Fonte: Journal of Computational Chemistry. Unidade: IQSC

    Assuntos: ESTRUTURA ELETRÔNICA, HIDROGÊNIO, XENÔNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSMÃO, Eriosvaldo Florentino e HAIDUKE, Roberto Luiz Andrade. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon. Journal of Computational Chemistry, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1002/jcc.26990. Acesso em: 09 nov. 2025.
    • APA

      Gusmão, E. F., & Haiduke, R. L. A. (2022). Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon. Journal of Computational Chemistry, 1-10. doi:10.1002/jcc.26990
    • NLM

      Gusmão EF, Haiduke RLA. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon [Internet]. Journal of Computational Chemistry. 2022 ;1-10.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/jcc.26990
    • Vancouver

      Gusmão EF, Haiduke RLA. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon [Internet]. Journal of Computational Chemistry. 2022 ;1-10.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/jcc.26990
  • Fonte: Physical review b. Unidade: EEL

    Assuntos: ESTRUTURA ELETRÔNICA, MATÉRIA CONDENSADA, ELASTICIDADE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Pedro Pires et al. Strain engineering the topological type-II Dirac semimetal. Physical review b, v. 103, n. art. 125134, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.103.125134. Acesso em: 09 nov. 2025.
    • APA

      Ferreira, P. P., Manesco, A. L. R., Dorini, T. T., Correa, L. E., Weber, G., Machado, A. J. da S., & Eleno, L. T. F. (2021). Strain engineering the topological type-II Dirac semimetal. Physical review b, 103( art. 125134), 1-13. doi:10.1103/PhysRevB.103.125134
    • NLM

      Ferreira PP, Manesco ALR, Dorini TT, Correa LE, Weber G, Machado AJ da S, Eleno LTF. Strain engineering the topological type-II Dirac semimetal [Internet]. Physical review b. 2021 ;103( art. 125134): 1-13.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.103.125134
    • Vancouver

      Ferreira PP, Manesco ALR, Dorini TT, Correa LE, Weber G, Machado AJ da S, Eleno LTF. Strain engineering the topological type-II Dirac semimetal [Internet]. Physical review b. 2021 ;103( art. 125134): 1-13.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.103.125134
  • Fonte: Physical review B. Unidade: EEL

    Assuntos: ELASTICIDADE DAS ESTRUTURAS, SUPERCONDUTIVIDADE, FÍSICA DA MATÉRIA CONDENSADA, ESTRUTURA ELETRÔNICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Pedro Nunes et al. Strain engineering the topological type-II Dirac semimetal NiTe2. Physical review B, v. 103, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1103/physrevb.103.125134. Acesso em: 09 nov. 2025.
    • APA

      Ferreira, P. N., Manesco, A. L. R., Dorini, T. T., Correa, L. E., Weber, G., Machado, A. J. da S., & Eleno, L. T. F. (2021). Strain engineering the topological type-II Dirac semimetal NiTe2. Physical review B, 103, 1-13. doi:10.1103/physrevb.103.125134
    • NLM

      Ferreira PN, Manesco ALR, Dorini TT, Correa LE, Weber G, Machado AJ da S, Eleno LTF. Strain engineering the topological type-II Dirac semimetal NiTe2 [Internet]. Physical review B. 2021 ;103 1-13.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/physrevb.103.125134
    • Vancouver

      Ferreira PN, Manesco ALR, Dorini TT, Correa LE, Weber G, Machado AJ da S, Eleno LTF. Strain engineering the topological type-II Dirac semimetal NiTe2 [Internet]. Physical review B. 2021 ;103 1-13.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/physrevb.103.125134
  • Fonte: Physical Review B. Unidade: IF

    Assuntos: FÍSICA DA MATÉRIA CONDENSADA, RESSONÂNCIA MAGNÉTICA, FERROMAGNETISMO, ESTRUTURA ELETRÔNICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, Ivan et al. Mechanisms behind large Gilbert damping anisotropies. Physical Review B, v. 103, n. 22, 2021Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.103.L220405. Acesso em: 09 nov. 2025.
    • APA

      Miranda, I., Klautau, A., Bergman, A., Thonig, D., Petrilli, H., & Eriksson, O. (2021). Mechanisms behind large Gilbert damping anisotropies. Physical Review B, 103( 22). doi:10.1103/PhysRevB.103.L220405
    • NLM

      Miranda I, Klautau A, Bergman A, Thonig D, Petrilli H, Eriksson O. Mechanisms behind large Gilbert damping anisotropies [Internet]. Physical Review B. 2021 ; 103( 22):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.103.L220405
    • Vancouver

      Miranda I, Klautau A, Bergman A, Thonig D, Petrilli H, Eriksson O. Mechanisms behind large Gilbert damping anisotropies [Internet]. Physical Review B. 2021 ; 103( 22):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.103.L220405
  • Fonte: Journal of Chemical Theory and Computation. Unidade: IF

    Assuntos: MATERIAIS, FÍSICO-QUÍMICA, ESPECTROSCOPIA DA LUZ, ESTRUTURA ELETRÔNICA, ÁGUA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, James Moraes de et al. Electronic Structure of Water from Koopmans-Compliant Functionals. Journal of Chemical Theory and Computation, v. 17, n. 7, p. 3923-3930, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jctc.1c00063. Acesso em: 09 nov. 2025.
    • APA

      Almeida, J. M. de, Nguyen, N. L., Colonna, N., Chen, W., Miranda, C. R., Pasquarello, A., & Marzari, N. (2021). Electronic Structure of Water from Koopmans-Compliant Functionals. Journal of Chemical Theory and Computation, 17( 7), 3923-3930. doi:10.1021/acs.jctc.1c00063
    • NLM

      Almeida JM de, Nguyen NL, Colonna N, Chen W, Miranda CR, Pasquarello A, Marzari N. Electronic Structure of Water from Koopmans-Compliant Functionals [Internet]. Journal of Chemical Theory and Computation. 2021 ; 17( 7): 3923-3930.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jctc.1c00063
    • Vancouver

      Almeida JM de, Nguyen NL, Colonna N, Chen W, Miranda CR, Pasquarello A, Marzari N. Electronic Structure of Water from Koopmans-Compliant Functionals [Internet]. Journal of Chemical Theory and Computation. 2021 ; 17( 7): 3923-3930.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jctc.1c00063
  • Fonte: Journal of Chemical Theory and Computation. Unidade: FFCLRP

    Assuntos: APRENDIZADO COMPUTACIONAL, ESTRUTURA ELETRÔNICA, QUÍMICA TEÓRICA, ACOPLAGEM

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHU, Yinan et al. Permutationally restrained diabatization by machine intelligence. Journal of Chemical Theory and Computation, v. 17, n. 2, p. 1106-1116, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jctc.0c01110. Acesso em: 09 nov. 2025.
    • APA

      Shu, Y., Varga, Z., Oliveira Filho, A. G. S. de, & Truhlar, D. G. (2021). Permutationally restrained diabatization by machine intelligence. Journal of Chemical Theory and Computation, 17( 2), 1106-1116. doi:10.1021/acs.jctc.0c01110
    • NLM

      Shu Y, Varga Z, Oliveira Filho AGS de, Truhlar DG. Permutationally restrained diabatization by machine intelligence [Internet]. Journal of Chemical Theory and Computation. 2021 ; 17( 2): 1106-1116.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jctc.0c01110
    • Vancouver

      Shu Y, Varga Z, Oliveira Filho AGS de, Truhlar DG. Permutationally restrained diabatization by machine intelligence [Internet]. Journal of Chemical Theory and Computation. 2021 ; 17( 2): 1106-1116.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jctc.0c01110
  • Fonte: Physical Review B. Unidades: IF, IQ

    Assuntos: ESPECTROSCOPIA, RAIOS X, RADIAÇÃO SINCROTRON, MAGNETISMO, ESTRUTURA ELETRÔNICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOUNSSEF JR., Bassim et al. Hard x-ray spectroscopy of the itinerant magnetsRFe4Sb12(R=Na, K, Ca, Sr, Ba). Physical Review B, v. 99, n. 3, 2019Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.99.035152. Acesso em: 09 nov. 2025.
    • APA

      Mounssef Jr., B., Cantarino, M. dos R., Bittar, E. M., Germano, T. M., Leithe-Jasper, A., & Garcia, F. A. (2019). Hard x-ray spectroscopy of the itinerant magnetsRFe4Sb12(R=Na, K, Ca, Sr, Ba). Physical Review B, 99( 3). doi:10.1103/PhysRevB.99.035152
    • NLM

      Mounssef Jr. B, Cantarino M dos R, Bittar EM, Germano TM, Leithe-Jasper A, Garcia FA. Hard x-ray spectroscopy of the itinerant magnetsRFe4Sb12(R=Na, K, Ca, Sr, Ba) [Internet]. Physical Review B. 2019 ; 99( 3):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.99.035152
    • Vancouver

      Mounssef Jr. B, Cantarino M dos R, Bittar EM, Germano TM, Leithe-Jasper A, Garcia FA. Hard x-ray spectroscopy of the itinerant magnetsRFe4Sb12(R=Na, K, Ca, Sr, Ba) [Internet]. Physical Review B. 2019 ; 99( 3):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.99.035152
  • Fonte: Journal of Physical Chemistry C. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, SEMICONDUTORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PANDER, Piotr et al. Thermally activated delayed fluorescence mediated through the upper triplet state manifold in non-charge-transfer star-shaped triphenylamine–carbazole molecules. Journal of Physical Chemistry C, v. 122, n. 42, p. 23934-23942, 2018Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.8b07510. Acesso em: 09 nov. 2025.
    • APA

      Pander, P., Etherington, M. K., Monkman, A. P., Motyka, R., Zassowski, P., Varsano, D., et al. (2018). Thermally activated delayed fluorescence mediated through the upper triplet state manifold in non-charge-transfer star-shaped triphenylamine–carbazole molecules. Journal of Physical Chemistry C, 122( 42), 23934-23942. doi:10.1021/acs.jpcc.8b07510
    • NLM

      Pander P, Etherington MK, Monkman AP, Motyka R, Zassowski P, Varsano D, Data P, Silva TJ da, Caldas MJ. Thermally activated delayed fluorescence mediated through the upper triplet state manifold in non-charge-transfer star-shaped triphenylamine–carbazole molecules [Internet]. Journal of Physical Chemistry C. 2018 ; 122( 42): 23934-23942.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpcc.8b07510
    • Vancouver

      Pander P, Etherington MK, Monkman AP, Motyka R, Zassowski P, Varsano D, Data P, Silva TJ da, Caldas MJ. Thermally activated delayed fluorescence mediated through the upper triplet state manifold in non-charge-transfer star-shaped triphenylamine–carbazole molecules [Internet]. Journal of Physical Chemistry C. 2018 ; 122( 42): 23934-23942.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpcc.8b07510
  • Fonte: Physical Review B. Unidades: EEL, IF

    Assuntos: ESTRUTURA ELETRÔNICA, SUPERCONDUTIVIDADE, FÍSICA DA MATÉRIA CONDENSADA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, P. P et al. Insights into the unconventional superconductivity in HfV2Ga4 and ScV2Ga4 from first-principles electronic-structure calculations. Physical Review B, v. 98, n. 4, p. 1-7, 2018Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.98.045126. Acesso em: 09 nov. 2025.
    • APA

      Ferreira, P. P., Santos, F. B., Machado, A. J. S., Eleno, L. T. F., & Petrilli, H. M. (2018). Insights into the unconventional superconductivity in HfV2Ga4 and ScV2Ga4 from first-principles electronic-structure calculations. Physical Review B, 98( 4), 1-7. doi:10.1103/PhysRevB.98.045126
    • NLM

      Ferreira PP, Santos FB, Machado AJS, Eleno LTF, Petrilli HM. Insights into the unconventional superconductivity in HfV2Ga4 and ScV2Ga4 from first-principles electronic-structure calculations [Internet]. Physical Review B. 2018 ; 98( 4): 1-7.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.98.045126
    • Vancouver

      Ferreira PP, Santos FB, Machado AJS, Eleno LTF, Petrilli HM. Insights into the unconventional superconductivity in HfV2Ga4 and ScV2Ga4 from first-principles electronic-structure calculations [Internet]. Physical Review B. 2018 ; 98( 4): 1-7.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.98.045126
  • Fonte: Physical Review B. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, SEMICONDUTIVIDADE, FILMES FINOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUILHON, Ivan et al. Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials. Physical Review B, v. 97, n. 4, 2018Tradução . . Disponível em: https://doi.org/10.1103/physrevb.97.045426. Acesso em: 09 nov. 2025.
    • APA

      Guilhon, I., Koda, D. S., Ferreira, L. G., Marques, M., & Teles, L. K. (2018). Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials. Physical Review B, 97( 4). doi:10.1103/physrevb.97.045426
    • NLM

      Guilhon I, Koda DS, Ferreira LG, Marques M, Teles LK. Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials [Internet]. Physical Review B. 2018 ; 97( 4):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/physrevb.97.045426
    • Vancouver

      Guilhon I, Koda DS, Ferreira LG, Marques M, Teles LK. Approximate quasiparticle correction for calculations of the energy gap in two-dimensional materials [Internet]. Physical Review B. 2018 ; 97( 4):[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/physrevb.97.045426
  • Fonte: Journal of Physical Chemistry B. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, ELETROSTÁTICA, NUCLEOSÍDEOS, MICROSCÓPIA

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISTAFA, Carlos et al. Microscopic origin of different hydration patterns of para-nitrophenol and its anion: a study combining multiconfigurational calculations and the free-energy gradient method. Journal of Physical Chemistry B, v. 122, n. 39, p. 9202-9209, 2018Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcb.8b06439. Acesso em: 09 nov. 2025.
    • APA

      Bistafa, C., Kitamura, Y., Nagaoka, M., & Canuto, S. R. A. (2018). Microscopic origin of different hydration patterns of para-nitrophenol and its anion: a study combining multiconfigurational calculations and the free-energy gradient method. Journal of Physical Chemistry B, 122( 39), 9202-9209. doi:10.1021/acs.jpcb.8b06439
    • NLM

      Bistafa C, Kitamura Y, Nagaoka M, Canuto SRA. Microscopic origin of different hydration patterns of para-nitrophenol and its anion: a study combining multiconfigurational calculations and the free-energy gradient method [Internet]. Journal of Physical Chemistry B. 2018 ; 122( 39): 9202-9209.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpcb.8b06439
    • Vancouver

      Bistafa C, Kitamura Y, Nagaoka M, Canuto SRA. Microscopic origin of different hydration patterns of para-nitrophenol and its anion: a study combining multiconfigurational calculations and the free-energy gradient method [Internet]. Journal of Physical Chemistry B. 2018 ; 122( 39): 9202-9209.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jpcb.8b06439
  • Fonte: Journal of Molecular Modeling. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, ELETROSTÁTICA, NUCLEOSÍDEOS, CLUSTERS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LACERDA JR., Evanildo G. et al. Theoretical study of the NMR chemical shift of 'XE' in supercritical condition. Journal of Molecular Modeling, v. 24, n. 3, p. 62, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00894-018-3600-4. Acesso em: 09 nov. 2025.
    • APA

      Lacerda Jr., E. G., Sauer, S. P. A., Mikkelsen, K. V., Canuto, S. R. A., & Coutinho, K. R. (2018). Theoretical study of the NMR chemical shift of 'XE' in supercritical condition. Journal of Molecular Modeling, 24( 3), 62. doi:10.1007/s00894-018-3600-4
    • NLM

      Lacerda Jr. EG, Sauer SPA, Mikkelsen KV, Canuto SRA, Coutinho KR. Theoretical study of the NMR chemical shift of 'XE' in supercritical condition [Internet]. Journal of Molecular Modeling. 2018 ; 24( 3): 62.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00894-018-3600-4
    • Vancouver

      Lacerda Jr. EG, Sauer SPA, Mikkelsen KV, Canuto SRA, Coutinho KR. Theoretical study of the NMR chemical shift of 'XE' in supercritical condition [Internet]. Journal of Molecular Modeling. 2018 ; 24( 3): 62.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00894-018-3600-4
  • Fonte: International Journal of Quantum Chemistry. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, ELETROSTÁTICA, NUCLEOSÍDEOS, CLUSTERS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAUDHURI, Puspitapallab e PROVASI, Patricio F. e CANUTO, Sylvio Roberto Accioly. NMR spin–spin coupling constants in hydrogen‐bonded glycine clusters. International Journal of Quantum Chemistry, v. 118 n. 15, p. e25608, 2018Tradução . . Disponível em: https://doi.org/10.1002/qua.25608. Acesso em: 09 nov. 2025.
    • APA

      Chaudhuri, P., Provasi, P. F., & Canuto, S. R. A. (2018). NMR spin–spin coupling constants in hydrogen‐bonded glycine clusters. International Journal of Quantum Chemistry, 118 n. 15, e25608. doi:10.1002/qua.25608
    • NLM

      Chaudhuri P, Provasi PF, Canuto SRA. NMR spin–spin coupling constants in hydrogen‐bonded glycine clusters [Internet]. International Journal of Quantum Chemistry. 2018 ; 118 n. 15 e25608.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/qua.25608
    • Vancouver

      Chaudhuri P, Provasi PF, Canuto SRA. NMR spin–spin coupling constants in hydrogen‐bonded glycine clusters [Internet]. International Journal of Quantum Chemistry. 2018 ; 118 n. 15 e25608.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1002/qua.25608
  • Fonte: Physical Review B. Unidade: IF

    Assunto: ESTRUTURA ELETRÔNICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSEV, Guennadii Michailovich et al. Robust helical edge transport at 'nü' = 0 quantum Hall state. Physical Review B, v. 96, n. 4, p. 045304/1-045304/5, 2017Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.96.045304. Acesso em: 09 nov. 2025.
    • APA

      Gusev, G. M., Kozlov, D. A., Levine, A., Kvon, Z. D., Mikhailov, N. N., & Dvoretsky, S. A. (2017). Robust helical edge transport at 'nü' = 0 quantum Hall state. Physical Review B, 96( 4), 045304/1-045304/5. doi:10.1103/PhysRevB.96.045304
    • NLM

      Gusev GM, Kozlov DA, Levine A, Kvon ZD, Mikhailov NN, Dvoretsky SA. Robust helical edge transport at 'nü' = 0 quantum Hall state [Internet]. Physical Review B. 2017 ;96( 4): 045304/1-045304/5.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.96.045304
    • Vancouver

      Gusev GM, Kozlov DA, Levine A, Kvon ZD, Mikhailov NN, Dvoretsky SA. Robust helical edge transport at 'nü' = 0 quantum Hall state [Internet]. Physical Review B. 2017 ;96( 4): 045304/1-045304/5.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.96.045304
  • Fonte: Physical Review B. Unidade: IF

    Assuntos: ESTRUTURA ELETRÔNICA, MAGNETISMO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VALENCIA, Ana Maria e CALDAS, Marilia Junqueira. Single vacancy defect in graphene: insights into its magnetic properties from theoretical modeling. Physical Review B, v. 96, n. 12, p. 125431/1- 125431/9, 2017Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.96.125431. Acesso em: 09 nov. 2025.
    • APA

      Valencia, A. M., & Caldas, M. J. (2017). Single vacancy defect in graphene: insights into its magnetic properties from theoretical modeling. Physical Review B, 96( 12), 125431/1- 125431/9. doi:10.1103/PhysRevB.96.125431
    • NLM

      Valencia AM, Caldas MJ. Single vacancy defect in graphene: insights into its magnetic properties from theoretical modeling [Internet]. Physical Review B. 2017 ; 96( 12): 125431/1- 125431/9.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.96.125431
    • Vancouver

      Valencia AM, Caldas MJ. Single vacancy defect in graphene: insights into its magnetic properties from theoretical modeling [Internet]. Physical Review B. 2017 ; 96( 12): 125431/1- 125431/9.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1103/PhysRevB.96.125431

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025