Filtros : "Singapura" "IFSC" "Springer" Removido: "ESPECTROSCOPIA" Limpar

Filtros



Refine with date range


  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 16 jul. 2024. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 16 jul. 2024. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, APRENDIZADO COMPUTACIONAL, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IBÁÑEZ-REDÍN, Glenda Gisela et al. A machine learning approach in wearable technologies. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_3. Acesso em: 16 jul. 2024.
    • APA

      Ibáñez-Redín, G. G., Duarte, O. S., Cagnani, G. R., & Oliveira Junior, O. N. de. (2023). A machine learning approach in wearable technologies. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_3
    • NLM

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
    • Vancouver

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
  • Source: Handbook of animal models and its uses in cancer research. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, ÓPTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e AZEVEDO, Mirian Denise Stringasci de e BUZZÁ, Hilde Harb. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. Handbook of animal models and its uses in cancer research. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-19-3824-5_29. Acesso em: 16 jul. 2024.
    • APA

      Requena, M. B., Azevedo, M. D. S. de, & Buzzá, H. H. (2023). Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. In Handbook of animal models and its uses in cancer research. Singapore: Springer. doi:10.1007/978-981-19-3824-5_29
    • NLM

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
    • Vancouver

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, SENSORES QUÍMICOS, SENSORES ÓPTICOS, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Recent advances in machine learning for electrochemical, optical, and gas sensors. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_6. Acesso em: 16 jul. 2024.
    • APA

      Materon, E. M., Silva, F. S. R. da, Ribas, L. C., Joshi, N. K. J., Bruno, O. M., Carrilho, E., & Oliveira Junior, O. N. de. (2023). Recent advances in machine learning for electrochemical, optical, and gas sensors. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_6
    • NLM

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
    • Vancouver

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
  • Source: Molecular architectonics and nanoarchitectonics. Unidades: IQSC, IFSC

    Subjects: SENSOR, FILMES FINOS, MATERIAIS NANOESTRUTURADOS, POLÍMEROS (MATERIAIS), BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro et al. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. Molecular architectonics and nanoarchitectonics. Tradução . Singapore: Springer, 2022. p. 548 . Disponível em: https://doi.org/10.1007/978-981-16-4189-3_19. Acesso em: 16 jul. 2024.
    • APA

      Pereira, A. R., Melo, A. F. A. de A., Crespilho, F. N., & Oliveira Junior, O. N. de. (2022). Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. In Molecular architectonics and nanoarchitectonics (p. 548 ). Singapore: Springer. doi:10.1007/978-981-16-4189-3_19
    • NLM

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
    • Vancouver

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
  • Source: Handbook of oxidative stress in cancer: therapeutic aspects. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, CARCINOMA BASOCELULAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e SÁLVIO, Ana Gabriela e BAGNATO, Vanderlei Salvador. Advances in photodynamic protocols for nonmelanoma skin cancer. Handbook of oxidative stress in cancer: therapeutic aspects. Tradução . Singapore: Springer, 2022. . Disponível em: https://doi.org/10.1007/978-981-16-5422-0_198. Acesso em: 16 jul. 2024.
    • APA

      Requena, M. B., Sálvio, A. G., & Bagnato, V. S. (2022). Advances in photodynamic protocols for nonmelanoma skin cancer. In Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer. doi:10.1007/978-981-16-5422-0_198
    • NLM

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
    • Vancouver

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, RADIAÇÃO ULTRAVIOLETA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav et al. Recent advances on UV-enhanced oxide nanostructures gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_6. Acesso em: 16 jul. 2024.
    • APA

      Joshi, N., Tomer, V. K., Malik, R., & Nie, J. (2020). Recent advances on UV-enhanced oxide nanostructures gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_6
    • NLM

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
    • Vancouver

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
  • Source: Essentials of cancer genomic, computational approaches and precision medicine. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, NEOPLASIAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIBI, Naheed e AWAN, Iram Taj e AWAN, Almas Taj. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. Essentials of cancer genomic, computational approaches and precision medicine. Tradução . Singapore: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-981-15-1067-0_5. Acesso em: 16 jul. 2024.
    • APA

      Bibi, N., Awan, I. T., & Awan, A. T. (2020). New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. In Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer. doi:10.1007/978-981-15-1067-0_5
    • NLM

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
    • Vancouver

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
  • Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Functional nanomaterials: advances in gas sensing technologies. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-15-4810-9. Acesso em: 16 jul. 2024. , 2020
    • APA

      Functional nanomaterials: advances in gas sensing technologies. (2020). Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer. doi:10.1007/978-981-15-4810-9
    • NLM

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
    • Vancouver

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, ELETRODO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHIMIZU, Flavio M. et al. Graphene-polymer-modified gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_09. Acesso em: 16 jul. 2024.
    • APA

      Shimizu, F. M., Davis, F., Oliveira Junior, O. N. de, & Higson, S. P. J. (2020). Graphene-polymer-modified gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_09
    • NLM

      Shimizu FM, Davis F, Oliveira Junior ON de, Higson SPJ. Graphene-polymer-modified gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_09
    • Vancouver

      Shimizu FM, Davis F, Oliveira Junior ON de, Higson SPJ. Graphene-polymer-modified gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_09
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MISHRA, Prashant Kumar et al. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_11. Acesso em: 16 jul. 2024.
    • APA

      Mishra, P. K., Malik, R., Tomer, V. K., & Joshi, N. (2020). Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_11
    • NLM

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
    • Vancouver

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, ELETRODO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSAIN, Abhay. Carbon nanotube based wearable room temperature gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_13. Acesso em: 16 jul. 2024.
    • APA

      Gusain, A. (2020). Carbon nanotube based wearable room temperature gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_13
    • NLM

      Gusain A. Carbon nanotube based wearable room temperature gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_13
    • Vancouver

      Gusain A. Carbon nanotube based wearable room temperature gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_13
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, ELETRODO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAVIS, Frank et al. Calixarene-based gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_17. Acesso em: 16 jul. 2024.
    • APA

      Davis, F., Higson, S. P. J., Oliveira Junior, O. N. de, & Shimizu, F. M. (2020). Calixarene-based gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_17
    • NLM

      Davis F, Higson SPJ, Oliveira Junior ON de, Shimizu FM. Calixarene-based gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_17
    • Vancouver

      Davis F, Higson SPJ, Oliveira Junior ON de, Shimizu FM. Calixarene-based gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jul. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_17

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024