Filtros : "ICMC-SMA" "Holanda" Removido: "2005" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematics Teacher Education. Unidade: ICMC

    Subjects: EDUCAÇÃO MATEMÁTICA, IDENTIDADE DE GÊNERO, FORMAÇÃO DE PROFESSORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Denner Dias e SKOVSMOSE, Ole. LGBTQ+ life conditions: a landscape of investigation in mathematics education. Journal of Mathematics Teacher Education, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10857-024-09633-7. Acesso em: 11 nov. 2024.
    • APA

      Barros, D. D., & Skovsmose, O. (2024). LGBTQ+ life conditions: a landscape of investigation in mathematics education. Journal of Mathematics Teacher Education. doi:10.1007/s10857-024-09633-7
    • NLM

      Barros DD, Skovsmose O. LGBTQ+ life conditions: a landscape of investigation in mathematics education [Internet]. Journal of Mathematics Teacher Education. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10857-024-09633-7
    • Vancouver

      Barros DD, Skovsmose O. LGBTQ+ life conditions: a landscape of investigation in mathematics education [Internet]. Journal of Mathematics Teacher Education. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10857-024-09633-7
  • Source: Stochastic Processes and their Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, EQUAÇÕES INTEGRAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Stability for generalized stochastic equations. Stochastic Processes and their Applications, v. 173, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104358. Acesso em: 11 nov. 2024.
    • APA

      Silva, F. A. da, Bonotto, E. de M., & Federson, M. (2024). Stability for generalized stochastic equations. Stochastic Processes and their Applications, 173, 1-14. doi:10.1016/j.spa.2024.104358
    • NLM

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.spa.2024.104358
    • Vancouver

      Silva FA da, Bonotto E de M, Federson M. Stability for generalized stochastic equations [Internet]. Stochastic Processes and their Applications. 2024 ; 173 1-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.spa.2024.104358
  • Source: Topology and its Applications. Unidades: ICMC, IME

    Assunto: ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Gabriel Zanetti Nunes e PINTO, Guilherme Eduardo e ROCHA, Vinicius Oliveira. On totally Lindelöf spaces. Topology and its Applications, v. 341, n. Ja 2024, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108704. Acesso em: 11 nov. 2024.
    • APA

      Fernandes, G. Z. N., Pinto, G. E., & Rocha, V. O. (2024). On totally Lindelöf spaces. Topology and its Applications, 341( Ja 2024), 1-12. doi:10.1016/j.topol.2023.108704
    • NLM

      Fernandes GZN, Pinto GE, Rocha VO. On totally Lindelöf spaces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-12.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2023.108704
    • Vancouver

      Fernandes GZN, Pinto GE, Rocha VO. On totally Lindelöf spaces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-12.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2023.108704
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: K-TEORIA, COHOMOLOGIA DE GRUPOS, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e PÉREZ, Elvis Torres. A refined scissors congruence group and the third homology of 'SL IND. 2'. Journal of Pure and Applied Algebra, v. 228, n. Ja 2024, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2024.107615. Acesso em: 11 nov. 2024.
    • APA

      Mirzaii, B., & Pérez, E. T. (2024). A refined scissors congruence group and the third homology of 'SL IND. 2'. Journal of Pure and Applied Algebra, 228( Ja 2024), 1-28. doi:10.1016/j.jpaa.2024.107615
    • NLM

      Mirzaii B, Pérez ET. A refined scissors congruence group and the third homology of 'SL IND. 2' [Internet]. Journal of Pure and Applied Algebra. 2024 ; 228( Ja 2024): 1-28.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2024.107615
    • Vancouver

      Mirzaii B, Pérez ET. A refined scissors congruence group and the third homology of 'SL IND. 2' [Internet]. Journal of Pure and Applied Algebra. 2024 ; 228( Ja 2024): 1-28.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2024.107615
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, v. 26, n. 6, p. 2383-2397, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10468-022-10178-7. Acesso em: 11 nov. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2023). On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, 26( 6), 2383-2397. doi:10.1007/s10468-022-10178-7
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 11 nov. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188
    • NLM

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
  • Source: Bernoulli. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, CAMPOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PORCU, Emilio et al. Rudin extension theorems on product spaces, turning bands, and random fields on balls cross time. Bernoulli, v. 29, n. 2, p. 1464-1475, 2023Tradução . . Disponível em: https://doi.org/10.3150/22-BEJ1506. Acesso em: 11 nov. 2024.
    • APA

      Porcu, E., Feng, S. F., Emery, X., & Peron, A. P. (2023). Rudin extension theorems on product spaces, turning bands, and random fields on balls cross time. Bernoulli, 29( 2), 1464-1475. doi:10.3150/22-BEJ1506
    • NLM

      Porcu E, Feng SF, Emery X, Peron AP. Rudin extension theorems on product spaces, turning bands, and random fields on balls cross time [Internet]. Bernoulli. 2023 ; 29( 2): 1464-1475.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3150/22-BEJ1506
    • Vancouver

      Porcu E, Feng SF, Emery X, Peron AP. Rudin extension theorems on product spaces, turning bands, and random fields on balls cross time [Internet]. Bernoulli. 2023 ; 29( 2): 1464-1475.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3150/22-BEJ1506
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 11 nov. 2024.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, v. No 2022, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2022.103191. Acesso em: 11 nov. 2024.
    • APA

      Jorge Pérez, V. H., & Lima, P. H. A. A. (2022). Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, No 2022, 1-16. doi:10.1016/j.bulsci.2022.103191
    • NLM

      Jorge Pérez VH, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
    • Vancouver

      Jorge Pérez VH, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 11 nov. 2024.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: K-TEORIA, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz. Homology of 'GL IND. N' over infinite fields outside the stability range. Journal of Pure and Applied Algebra, v. 226, n. 5, p. 1-33, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106916. Acesso em: 11 nov. 2024.
    • APA

      Mirzaii, B. (2022). Homology of 'GL IND. N' over infinite fields outside the stability range. Journal of Pure and Applied Algebra, 226( 5), 1-33. doi:10.1016/j.jpaa.2021.106916
    • NLM

      Mirzaii B. Homology of 'GL IND. N' over infinite fields outside the stability range [Internet]. Journal of Pure and Applied Algebra. 2022 ; 226( 5): 1-33.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106916
    • Vancouver

      Mirzaii B. Homology of 'GL IND. N' over infinite fields outside the stability range [Internet]. Journal of Pure and Applied Algebra. 2022 ; 226( 5): 1-33.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106916
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA HIPERBÓLICA E ELÍTICA, RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Rafael e REIS JUNIOR, João dos e GROSSI, Carlos Henrique. On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, v. 180, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2022.104629. Acesso em: 11 nov. 2024.
    • APA

      Ferreira, R., Reis Junior, J. dos, & Grossi, C. H. (2022). On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, 180, 1-13. doi:10.1016/j.geomphys.2022.104629
    • NLM

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
    • Vancouver

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
  • Source: Asymptotic Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DE CONTROLE, TEORIA DE SISTEMAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, v. 129, n. 1, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.3233/ASY-211719. Acesso em: 11 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2022). Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, 129( 1), 1-27. doi:10.3233/ASY-211719
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3233/ASY-211719
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3233/ASY-211719
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ESPAÇOS DE SOBOLEV, APROXIMAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIJO, Angelina O e JORDÃO, Thaís e SANTOS, Cristiano dos. Inequalities for moduli of smoothness on two-point homogeneous spaces. Positivity, v. 26, n. 3, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11117-022-00870-9. Acesso em: 11 nov. 2024.
    • APA

      Carrijo, A. O., Jordão, T., & Santos, C. dos. (2022). Inequalities for moduli of smoothness on two-point homogeneous spaces. Positivity, 26( 3), 1-16. doi:10.1007/s11117-022-00870-9
    • NLM

      Carrijo AO, Jordão T, Santos C dos. Inequalities for moduli of smoothness on two-point homogeneous spaces [Internet]. Positivity. 2022 ; 26( 3): 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11117-022-00870-9
    • Vancouver

      Carrijo AO, Jordão T, Santos C dos. Inequalities for moduli of smoothness on two-point homogeneous spaces [Internet]. Positivity. 2022 ; 26( 3): 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11117-022-00870-9
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: GEOMETRIA GLOBAL, EQUAÇÕES DIFERENCIAIS PARCIAIS, SUBVARIEDADES, VALORES PRÓPRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e ROTH, Julien e UPADHYAY, Abhitosh. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, v. 62, n. 3, p. 489-505, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10455-022-09862-0. Acesso em: 11 nov. 2024.
    • APA

      Manfio, F., Roth, J., & Upadhyay, A. (2022). Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, 62( 3), 489-505. doi:10.1007/s10455-022-09862-0
    • NLM

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
    • Vancouver

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 11 nov. 2024.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Source: Annals of Global Analysis and Geometry. Unidades: ICMC, IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANEVARI, Samuel et al. Complete submanifolds with relative nullity in space forms. Annals of Global Analysis and Geometry, v. 59, n. 1, p. 81-92, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10455-020-09742-5. Acesso em: 11 nov. 2024.
    • APA

      Canevari, S., Freitas, G. M. de, Guimarães, F., Manfio, F., & Santos, J. P. dos. (2021). Complete submanifolds with relative nullity in space forms. Annals of Global Analysis and Geometry, 59( 1), 81-92. doi:10.1007/s10455-020-09742-5
    • NLM

      Canevari S, Freitas GM de, Guimarães F, Manfio F, Santos JP dos. Complete submanifolds with relative nullity in space forms [Internet]. Annals of Global Analysis and Geometry. 2021 ; 59( 1): 81-92.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-020-09742-5
    • Vancouver

      Canevari S, Freitas GM de, Guimarães F, Manfio F, Santos JP dos. Complete submanifolds with relative nullity in space forms [Internet]. Annals of Global Analysis and Geometry. 2021 ; 59( 1): 81-92.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-020-09742-5
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e DUZI, Matheus. Topological games of bounded selections. Topology and its Applications, v. 291, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107449. Acesso em: 11 nov. 2024.
    • APA

      Aurichi, L. F., & Duzi, M. (2021). Topological games of bounded selections. Topology and its Applications, 291, 1-24. doi:10.1016/j.topol.2020.107449
    • NLM

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
    • Vancouver

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Subjects: ANÁLISE REAL, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MAWHIN, Jean e MESQUITA, Jaqueline Godoy. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, v. 169, p. 1-31, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2021.102991. Acesso em: 11 nov. 2024.
    • APA

      Federson, M., Mawhin, J., & Mesquita, J. G. (2021). Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, 169, 1-31. doi:10.1016/j.bulsci.2021.102991
    • NLM

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991
    • Vancouver

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991
  • Source: Annales de l'Institut Henri Poincaré – Analyse non linéaire. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson e NORNBERG, Gabrielle e SOAVE, Nicola. On unique continuation principles for some elliptic systems. Annales de l'Institut Henri Poincaré – Analyse non linéaire, v. 38, n. 5, p. Se-Oct. 2021, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.anihpc.2020.12.001. Acesso em: 11 nov. 2024.
    • APA

      Moreira dos Santos, E., Nornberg, G., & Soave, N. (2021). On unique continuation principles for some elliptic systems. Annales de l'Institut Henri Poincaré – Analyse non linéaire, 38( 5), Se-Oct. 2021. doi:10.1016/j.anihpc.2020.12.001
    • NLM

      Moreira dos Santos E, Nornberg G, Soave N. On unique continuation principles for some elliptic systems [Internet]. Annales de l'Institut Henri Poincaré – Analyse non linéaire. 2021 ; 38( 5): Se-Oct. 2021.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.anihpc.2020.12.001
    • Vancouver

      Moreira dos Santos E, Nornberg G, Soave N. On unique continuation principles for some elliptic systems [Internet]. Annales de l'Institut Henri Poincaré – Analyse non linéaire. 2021 ; 38( 5): Se-Oct. 2021.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.anihpc.2020.12.001

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024