Filtros : "Rybakowski, Krzysztof P." Removido: "Reino Unido" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DO ÍNDICE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Partial functional differential equations and Conley index. Journal of Differential Equations, v. 366, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.015. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2023). Partial functional differential equations and Conley index. Journal of Differential Equations, 366, Se 2023. doi:10.1016/j.jde.2023.04.015
    • NLM

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, v. 152, n. 2, p. 428-449, 2022Tradução . . Disponível em: https://doi.org/10.1017/prm.2021.15. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2022). Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions. Proceedings of the Royal Society of Edinburgh, 152( 2), 428-449. doi:10.1017/prm.2021.15
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1017/prm.2021.15
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions [Internet]. Proceedings of the Royal Society of Edinburgh. 2022 ; 152( 2): 428-449.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1017/prm.2021.15
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA DO ÍNDICE, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, v. 250, p. 41-62, 2020Tradução . . Disponível em: https://doi.org/10.4064/fm700-8-2019. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/fm700-8-2019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2024 nov. 07 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2024 nov. 07 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, v. 40, n. 1, p. 1-28, 2012Tradução . . Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2012). On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, 40( 1), 1-28.
    • NLM

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2024 nov. 07 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2024 nov. 07 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, v. 37, n. 1, p. 1-35, 2011Tradução . . Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2011). Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, 37( 1), 1-35.
    • NLM

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2024 nov. 07 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2024 nov. 07 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, v. 35, n. 1, p. 1-32, 2010Tradução . . Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2010). Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, 35( 1), 1-32.
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2024 nov. 07 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2024 nov. 07 ]
  • Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index and parabolic problems with localized large diffusion and nonlinear boundary conditions. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/756ecac2-de01-4dd6-b8c8-87562344d250/1760084.pdf. Acesso em: 07 nov. 2024. , 2009
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2009). Conley index and parabolic problems with localized large diffusion and nonlinear boundary conditions. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/756ecac2-de01-4dd6-b8c8-87562344d250/1760084.pdf
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and parabolic problems with localized large diffusion and nonlinear boundary conditions [Internet]. 2009 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/756ecac2-de01-4dd6-b8c8-87562344d250/1760084.pdf
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and parabolic problems with localized large diffusion and nonlinear boundary conditions [Internet]. 2009 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/756ecac2-de01-4dd6-b8c8-87562344d250/1760084.pdf
  • Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/cf6129cf-3a08-4470-94fb-1cdcfaa55cd8/1759887.pdf. Acesso em: 07 nov. 2024. , 2009
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2009). Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/cf6129cf-3a08-4470-94fb-1cdcfaa55cd8/1759887.pdf
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions [Internet]. 2009 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/cf6129cf-3a08-4470-94fb-1cdcfaa55cd8/1759887.pdf
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions [Internet]. 2009 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/cf6129cf-3a08-4470-94fb-1cdcfaa55cd8/1759887.pdf
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, v. 32, n. 2, p. 199-225, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463151164. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2008). On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, 32( 2), 199-225. Recuperado de https://projecteuclid.org/euclid.tmna/1463151164
    • NLM

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 nov. 07 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2024 nov. 07 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Continuation of the connection matrix for singularly perturbed hyperbolic equations. Fundamenta Mathematicae, v. 196, p. 253-273, 2007Tradução . . Disponível em: https://doi.org/10.4064/fm196-3-3. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2007). Continuation of the connection matrix for singularly perturbed hyperbolic equations. Fundamenta Mathematicae, 196, 253-273. doi:10.4064/fm196-3-3
    • NLM

      Carbinatto M do C, Rybakowski KP. Continuation of the connection matrix for singularly perturbed hyperbolic equations [Internet]. Fundamenta Mathematicae. 2007 ; 196 253-273.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/fm196-3-3
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Continuation of the connection matrix for singularly perturbed hyperbolic equations [Internet]. Fundamenta Mathematicae. 2007 ; 196 253-273.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/fm196-3-3
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, v. 28, n. 2, p. 199-233, 2006Tradução . . Disponível em: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2006). The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, 28( 2), 199-233. Recuperado de http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • NLM

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2024 nov. 07 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • Vancouver

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2024 nov. 07 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, v. 26, n. 1, p. 35-74, 2005Tradução . . Disponível em: https://doi.org/10.12775/tmna.2005.024. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2005). Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, 26( 1), 35-74. doi:10.12775/tmna.2005.024
    • NLM

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/tmna.2005.024
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/tmna.2005.024
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Nested sequences of index filtrations and continuation of the connection matrix. Journal of Differential Equations, v. 207, p. 458-488, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.08.020. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2004). Nested sequences of index filtrations and continuation of the connection matrix. Journal of Differential Equations, 207, 458-488. doi:10.1016/j.jde.2004.08.020
    • NLM

      Carbinatto M do C, Rybakowski KP. Nested sequences of index filtrations and continuation of the connection matrix [Internet]. Journal of Differential Equations. 2004 ; 207 458-488.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2004.08.020
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Nested sequences of index filtrations and continuation of the connection matrix [Internet]. Journal of Differential Equations. 2004 ; 207 458-488.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2004.08.020
  • Unidade: ICMC

    Assunto: ANÁLISE MATEMÁTICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Homology index braids in infinite-dimensional conley index theory. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/18716679-09b6-43bc-a12c-65eebe2a6af2/1402100.pdf. Acesso em: 07 nov. 2024. , 2004
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2004). Homology index braids in infinite-dimensional conley index theory. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/18716679-09b6-43bc-a12c-65eebe2a6af2/1402100.pdf
    • NLM

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. 2004 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/18716679-09b6-43bc-a12c-65eebe2a6af2/1402100.pdf
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. 2004 ;[citado 2024 nov. 07 ] Available from: https://repositorio.usp.br/directbitstream/18716679-09b6-43bc-a12c-65eebe2a6af2/1402100.pdf
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Morse decompositions in the absence of uniqueness, II. Journal of Differential Equations, v. 22, p. 15-51, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.026. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2003). Morse decompositions in the absence of uniqueness, II. Journal of Differential Equations, 22, 15-51. doi:10.12775/tmna.2003.026
    • NLM

      Carbinatto M do C, Rybakowski KP. Morse decompositions in the absence of uniqueness, II [Internet]. Journal of Differential Equations. 2003 ; 22 15-51.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/tmna.2003.026
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Morse decompositions in the absence of uniqueness, II [Internet]. Journal of Differential Equations. 2003 ; 22 15-51.[citado 2024 nov. 07 ] Available from: https://doi.org/10.12775/tmna.2003.026
  • Source: Conley Index Theory - Banach Center Publications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On perturbation of continuous maps. Conley Index Theory - Banach Center Publications, v. 47, p. 79-90, 1999Tradução . . Disponível em: https://doi.org/10.4064/-47-1-79-90. Acesso em: 07 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (1999). On perturbation of continuous maps. Conley Index Theory - Banach Center Publications, 47, 79-90. doi:10.4064/-47-1-79-90
    • NLM

      Carbinatto M do C, Rybakowski KP. On perturbation of continuous maps [Internet]. Conley Index Theory - Banach Center Publications. 1999 ; 47 79-90.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/-47-1-79-90
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On perturbation of continuous maps [Internet]. Conley Index Theory - Banach Center Publications. 1999 ; 47 79-90.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4064/-47-1-79-90

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024