Filtros : "Bonotto, Everaldo de Mello" "Indexado no Mathematical Reviews" Removido: "Indexado no Zentralblatt MATH" Limpar

Filtros



Refine with date range


  • Source: Collectanea Mathematica. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello. Monotone impulsive dynamical systems. Collectanea Mathematica, v. 69, p. 17-24, 2018Tradução . . Disponível em: https://doi.org/10.1007/s13348-016-0186-y. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M. (2018). Monotone impulsive dynamical systems. Collectanea Mathematica, 69, 17-24. doi:10.1007/s13348-016-0186-y
    • NLM

      Bonotto E de M. Monotone impulsive dynamical systems [Internet]. Collectanea Mathematica. 2018 ; 69 17-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s13348-016-0186-y
    • Vancouver

      Bonotto E de M. Monotone impulsive dynamical systems [Internet]. Collectanea Mathematica. 2018 ; 69 17-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s13348-016-0186-y
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Mathematical Methods in the Applied Sciences, v. 40, n. 4, p. 1095-1113, 2017Tradução . . Disponível em: https://doi.org/10.1002/mma.4038. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2017). Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Mathematical Methods in the Applied Sciences, 40( 4), 1095-1113. doi:10.1002/mma.4038
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40( 4): 1095-1113.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.4038
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40( 4): 1095-1113.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.4038
  • Source: Acta Mathematica Hungarica. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulsive surfaces on dynamical systems. Acta Mathematica Hungarica, v. 150, n. Ju 2016, p. 209-216, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10474-016-0631-0. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2016). Impulsive surfaces on dynamical systems. Acta Mathematica Hungarica, 150( Ju 2016), 209-216. doi:10.1007/s10474-016-0631-0
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive surfaces on dynamical systems [Internet]. Acta Mathematica Hungarica. 2016 ; 150( Ju 2016): 209-216.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10474-016-0631-0
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive surfaces on dynamical systems [Internet]. Acta Mathematica Hungarica. 2016 ; 150( Ju 2016): 209-216.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10474-016-0631-0
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FERREIRA, Jaqueline da Costa. Dissipativity in impulsive systems via Lyapunov functions. Mathematische Nachrichten, v. 289, n. 2-3, p. 213–231, 2016Tradução . . Disponível em: https://doi.org/10.1002/mana.201400398. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Ferreira, J. da C. (2016). Dissipativity in impulsive systems via Lyapunov functions. Mathematische Nachrichten, 289( 2-3), 213–231. doi:10.1002/mana.201400398
    • NLM

      Bonotto E de M, Ferreira J da C. Dissipativity in impulsive systems via Lyapunov functions [Internet]. Mathematische Nachrichten. 2016 ; 289( 2-3): 213–231.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201400398
    • Vancouver

      Bonotto E de M, Ferreira J da C. Dissipativity in impulsive systems via Lyapunov functions [Internet]. Mathematische Nachrichten. 2016 ; 289( 2-3): 213–231.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201400398
  • Source: Collectanea Mathematica. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FERREIRA, Jaqueline da Costa. Uniform attractors of discontinuous semidynamical systems. Collectanea Mathematica, v. 65, n. 1, p. 47-59, 2014Tradução . . Disponível em: https://doi.org/10.1007/s13348-012-0078-8. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Ferreira, J. da C. (2014). Uniform attractors of discontinuous semidynamical systems. Collectanea Mathematica, 65( 1), 47-59. doi:10.1007/s13348-012-0078-8
    • NLM

      Bonotto E de M, Ferreira J da C. Uniform attractors of discontinuous semidynamical systems [Internet]. Collectanea Mathematica. 2014 ; 65( 1): 47-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s13348-012-0078-8
    • Vancouver

      Bonotto E de M, Ferreira J da C. Uniform attractors of discontinuous semidynamical systems [Internet]. Collectanea Mathematica. 2014 ; 65( 1): 47-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s13348-012-0078-8
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, v. 27, n. 7-8, p. 721-742, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395750. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Federson, M. (2014). On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, 27( 7-8), 721-742. Recuperado de http://projecteuclid.org/euclid.die/1399395750
    • NLM

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 11 ] Available from: http://projecteuclid.org/euclid.die/1399395750
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 11 ] Available from: http://projecteuclid.org/euclid.die/1399395750
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M et al. Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations. Bulletin des Sciences Mathématiques, v. 137, n. 2, p. 189-214, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2012.10.001. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., Federson, M., & Gimenes, L. P. (2013). Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations. Bulletin des Sciences Mathématiques, 137( 2), 189-214. doi:10.1016/j.bulsci.2012.10.001
    • NLM

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2013 ; 137( 2): 189-214.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2012.10.001
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2013 ; 137( 2): 189-214.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2012.10.001
  • Source: Bulletin des Sciences Mathématiques (Paris. 1885). Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, D. P. Attractors of impulsive dissipative semidynamical systems. Bulletin des Sciences Mathématiques (Paris. 1885), v. 137, n. 5, p. 617\2013642, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2012.12.005. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Attractors of impulsive dissipative semidynamical systems. Bulletin des Sciences Mathématiques (Paris. 1885), 137( 5), 617\2013642. doi:10.1016/j.bulsci.2012.12.005
    • NLM

      Bonotto E de M, Demuner DP. Attractors of impulsive dissipative semidynamical systems [Internet]. Bulletin des Sciences Mathématiques (Paris. 1885). 2013 ; 137( 5): 617\2013642.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2012.12.005
    • Vancouver

      Bonotto E de M, Demuner DP. Attractors of impulsive dissipative semidynamical systems [Internet]. Bulletin des Sciences Mathématiques (Paris. 1885). 2013 ; 137( 5): 617\2013642.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2012.12.005
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M et al. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations. Mathematische Nachrichten, v. 285, n. 5-6, p. 545-561, 2012Tradução . . Disponível em: https://doi.org/10.1002/mana.201000081. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., Federson, M., & Gimenes, L. P. (2012). Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations. Mathematische Nachrichten, 285( 5-6), 545-561. doi:10.1002/mana.201000081
    • NLM

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations [Internet]. Mathematische Nachrichten. 2012 ; 285( 5-6): 545-561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201000081
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations [Internet]. Mathematische Nachrichten. 2012 ; 285( 5-6): 545-561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201000081
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Suzete Maria Silva et al. Discontinuous local semiflows for Kurzweil equations leading to LaSalle's Invariance Principle for differential systems with impulses at variable times. Journal of Differential Equations, v. 250, n. 7, p. 2969-3001, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.01.019. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M. S., Bonotto, E. de M., Federson, M., & Schwabik, S. (2011). Discontinuous local semiflows for Kurzweil equations leading to LaSalle's Invariance Principle for differential systems with impulses at variable times. Journal of Differential Equations, 250( 7), 2969-3001. doi:10.1016/j.jde.2011.01.019
    • NLM

      Afonso SMS, Bonotto E de M, Federson M, Schwabik S. Discontinuous local semiflows for Kurzweil equations leading to LaSalle's Invariance Principle for differential systems with impulses at variable times [Internet]. Journal of Differential Equations. 2011 ; 250( 7): 2969-3001.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2011.01.019
    • Vancouver

      Afonso SMS, Bonotto E de M, Federson M, Schwabik S. Discontinuous local semiflows for Kurzweil equations leading to LaSalle's Invariance Principle for differential systems with impulses at variable times [Internet]. Journal of Differential Equations. 2011 ; 250( 7): 2969-3001.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2011.01.019

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024