Filtros : "Espanha" "Llibre, Jaume" Removido: " IFSC007" Limpar

Filtros



Refine with date range


  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 11 nov. 2024.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e CARVALHO, Yagor Romano e LLIBRE, Jaume. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, v. 37, n. 4, p. 710-728, 2022Tradução . . Disponível em: https://doi.org/10.1080/14689367.2022.2122779. Acesso em: 11 nov. 2024.
    • APA

      Buzzi, C. A., Carvalho, Y. R., & Llibre, J. (2022). Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, 37( 4), 710-728. doi:10.1080/14689367.2022.2122779
    • NLM

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
    • Vancouver

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 11 nov. 2024.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.7798
  • Source: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, v. 32, n. 2, p. 317-336, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0956792520000145. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/S0956792520000145
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: VETORES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. Limit cycles on piecewise smooth vector fields with coupled rigid centers. International Journal of Bifurcation and Chaos, v. 31, n. 15, p. [19] , 2021Tradução . . Disponível em: https://doi.org/10.1142/S0218127421502242. Acesso em: 11 nov. 2024.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2021). Limit cycles on piecewise smooth vector fields with coupled rigid centers. International Journal of Bifurcation and Chaos, 31( 15), [19] . doi:10.1142/S0218127421502242
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. Limit cycles on piecewise smooth vector fields with coupled rigid centers [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 15): [19] .[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127421502242
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. Limit cycles on piecewise smooth vector fields with coupled rigid centers [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 15): [19] .[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127421502242
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, v. 69, p. 1-52, 2021Tradução . . Disponível em: https://ejde.math.txstate.edu/. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2024 nov. 11 ] Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2024 nov. 11 ] Available from: https://ejde.math.txstate.edu/
  • Unidades: FFCLRP, ICMC

    Subjects: EVENTOS, CURADORIA, MATEMÁTICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Virtual Workshop on Dynamical Systems 2020. . [Ribeirão Preto]: FFCLRP-USP. Disponível em: https://sites.google.com/view/osd2020virtual/. Acesso em: 11 nov. 2024. , 2020
    • APA

      Virtual Workshop on Dynamical Systems 2020. (2020). Virtual Workshop on Dynamical Systems 2020. [Ribeirão Preto]: FFCLRP-USP. Recuperado de https://sites.google.com/view/osd2020virtual/
    • NLM

      Virtual Workshop on Dynamical Systems 2020 [Internet]. 2020 ;[citado 2024 nov. 11 ] Available from: https://sites.google.com/view/osd2020virtual/
    • Vancouver

      Virtual Workshop on Dynamical Systems 2020 [Internet]. 2020 ;[citado 2024 nov. 11 ] Available from: https://sites.google.com/view/osd2020virtual/
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, ESPAÇOS SIMÉTRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, v. 14, n. 1, p. 49-65, 2020Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00163-7. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2020). Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, 14( 1), 49-65. doi:10.1007/s40863-020-00163-7
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
  • Source: Chaos, Solitons and Fractals. Unidade: ICMC

    Subjects: MODELOS MATEMÁTICOS, MODELOS EPIDEMIOLOGICOS, TUBERCULOSE, DENGUE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Final evolutions for simplified multistrain/two-stream model for tuberculosis and dengue fever. Chaos, Solitons and Fractals, v. 118, n. Ja 2019, p. 181-186, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2018.11.022. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2019). Final evolutions for simplified multistrain/two-stream model for tuberculosis and dengue fever. Chaos, Solitons and Fractals, 118( Ja 2019), 181-186. doi:10.1016/j.chaos.2018.11.022
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Final evolutions for simplified multistrain/two-stream model for tuberculosis and dengue fever [Internet]. Chaos, Solitons and Fractals. 2019 ; 118( Ja 2019): 181-186.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.chaos.2018.11.022
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Final evolutions for simplified multistrain/two-stream model for tuberculosis and dengue fever [Internet]. Chaos, Solitons and Fractals. 2019 ; 118( Ja 2019): 181-186.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.chaos.2018.11.022
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zabotinsky differential systems. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6874. Acesso em: 11 nov. 2024. , 2019
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2019). On the limit cycle of a Belousov-Zabotinsky differential systems. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;[citado 2024 nov. 11 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;[citado 2024 nov. 11 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6873. Acesso em: 11 nov. 2024. , 2019
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. (2019). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6873
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues C. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. 2019 ;[citado 2024 nov. 11 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6873
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues C. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. 2019 ;[citado 2024 nov. 11 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6873
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, v. 20, n. 4, p. 1750033-1-1750033-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S021919971750033X. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2018). Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, 20( 4), 1750033-1-1750033-15. doi:10.1142/S021919971750033X
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S021919971750033X
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S021919971750033X
  • Source: Computational and Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Ap. B. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, v. 37, n. 2, p. 1550-1561, 2018Tradução . . Disponível em: https://doi.org/10.1007/s40314-016-0413-x. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2018). On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, 37( 2), 1550-1561. doi:10.1007/s40314-016-0413-x
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, DINÂMICA TOPOLÓGICA, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, v. 234, p. 220-237, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.023. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2018). Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, 234, 220-237. doi:10.1016/j.topol.2017.11.023
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, v. No 2017, n. 9, p. 3259-3272, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2017136. Acesso em: 11 nov. 2024.
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2017). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, No 2017( 9), 3259-3272. doi:10.3934/dcdsb.2017136
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2017136
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2017136
  • Source: Journal of Nonlinear Mathematical Physics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS NÃO LINEARES, SUPERFÍCIES ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Darboux integrability of a three-dimensional forced-damped differential system. Journal of Nonlinear Mathematical Physics, v. 24, n. 4, p. 473-494, 2017Tradução . . Disponível em: https://doi.org/10.1080/14029251.2017.1375686. Acesso em: 11 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2017). On the Darboux integrability of a three-dimensional forced-damped differential system. Journal of Nonlinear Mathematical Physics, 24( 4), 473-494. doi:10.1080/14029251.2017.1375686
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. Journal of Nonlinear Mathematical Physics. 2017 ; 24( 4): 473-494.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14029251.2017.1375686
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. Journal of Nonlinear Mathematical Physics. 2017 ; 24( 4): 473-494.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14029251.2017.1375686
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Darboux integrability of a three-dimensional forced-damped differential system. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf. Acesso em: 11 nov. 2024. , 2016
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2016). On the Darboux integrability of a three-dimensional forced-damped differential system. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/8f999db0-ab09-4743-9d6b-e42100648894/NOTAS_ICMC_SERIE_MAT_421_2016.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Ap. B. Limit cycles for two classes of control piecewise linear differential systems. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/91922698-1fa6-4e0a-adb8-2ef26cec359a/NOTAS_ICMC_SERIE_MAT_425_2016.pdf. Acesso em: 11 nov. 2024. , 2016
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2016). Limit cycles for two classes of control piecewise linear differential systems. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/91922698-1fa6-4e0a-adb8-2ef26cec359a/NOTAS_ICMC_SERIE_MAT_425_2016.pdf
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/91922698-1fa6-4e0a-adb8-2ef26cec359a/NOTAS_ICMC_SERIE_MAT_425_2016.pdf
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/91922698-1fa6-4e0a-adb8-2ef26cec359a/NOTAS_ICMC_SERIE_MAT_425_2016.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/5c748bd3-cec2-4556-9872-06d2a190002a/Notas_ICMC_Serie_Mat_424_2016.pdf. Acesso em: 11 nov. 2024. , 2016
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2016). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/5c748bd3-cec2-4556-9872-06d2a190002a/Notas_ICMC_Serie_Mat_424_2016.pdf
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/5c748bd3-cec2-4556-9872-06d2a190002a/Notas_ICMC_Serie_Mat_424_2016.pdf
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. 2016 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/5c748bd3-cec2-4556-9872-06d2a190002a/Notas_ICMC_Serie_Mat_424_2016.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024