Source: Geoenergy Science and Engineering. Unidade: EP
Subjects: CARBONATOS, RESERVATÓRIOS, WIRELESS
ABNT
TAMOTO, Hugo e GIORIA, Rafael dos Santos e CARNEIRO, Cleyton de Carvalho. Enhancing wireline formation testing with explainable machine learning: Predicting effective and non-effective stations. Geoenergy Science and Engineering, v. 229, p. 1-8, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geoen.2023.212138. Acesso em: 03 nov. 2024.APA
Tamoto, H., Gioria, R. dos S., & Carneiro, C. de C. (2023). Enhancing wireline formation testing with explainable machine learning: Predicting effective and non-effective stations. Geoenergy Science and Engineering, 229, 1-8. doi:10.1016/j.geoen.2023.212138NLM
Tamoto H, Gioria R dos S, Carneiro C de C. Enhancing wireline formation testing with explainable machine learning: Predicting effective and non-effective stations [Internet]. Geoenergy Science and Engineering. 2023 ;229 1-8.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.geoen.2023.212138Vancouver
Tamoto H, Gioria R dos S, Carneiro C de C. Enhancing wireline formation testing with explainable machine learning: Predicting effective and non-effective stations [Internet]. Geoenergy Science and Engineering. 2023 ;229 1-8.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.geoen.2023.212138