Filtros : "Stochastic Processes and their Applications" "IME" Removidos: "Indexado no ISI Web of Knowledge" "EESC-SEL" "IF-FMT" "Nova Zelândia" "1981" Limpar

Filtros



Refine with date range


  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, GRANDES DESVIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, v. 176, n. artigo 104447, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104447. Acesso em: 14 nov. 2024.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2024). Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, 176( artigo 104447), 1-19. doi:10.1016/j.spa.2024.104447
    • NLM

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
  • Source: Stochastic Processes and their Applications. Unidades: IME, FFCLRP

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS ESTOCÁSTICOS PONTUAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LAXA, Kádmo de Souza. Fast consensus and metastability in a highly polarized social network. Stochastic Processes and their Applications, v. 177, n. artigo 104459, p. 1-24, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104459. Acesso em: 14 nov. 2024.
    • APA

      Galves, A., & Laxa, K. de S. (2024). Fast consensus and metastability in a highly polarized social network. Stochastic Processes and their Applications, 177( artigo 104459), 1-24. doi:10.1016/j.spa.2024.104459
    • NLM

      Galves A, Laxa K de S. Fast consensus and metastability in a highly polarized social network [Internet]. Stochastic Processes and their Applications. 2024 ; 177( artigo 104459): 1-24.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2024.104459
    • Vancouver

      Galves A, Laxa K de S. Fast consensus and metastability in a highly polarized social network [Internet]. Stochastic Processes and their Applications. 2024 ; 177( artigo 104459): 1-24.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2024.104459
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, TEORIA DA RENOVAÇÃO, PERCOLAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato Gonçalves et al. Renewal contact processes: phase transition and survival. Stochastic Processes and their Applications, v. 161, p. 102-136-, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2023.03.005. Acesso em: 14 nov. 2024.
    • APA

      Fontes, L. R. G., Mountford, T. S., Ungaretti, D., & Vares, M. E. (2023). Renewal contact processes: phase transition and survival. Stochastic Processes and their Applications, 161, 102-136-. doi:10.1016/j.spa.2023.03.005
    • NLM

      Fontes LRG, Mountford TS, Ungaretti D, Vares ME. Renewal contact processes: phase transition and survival [Internet]. Stochastic Processes and their Applications. 2023 ; 161 102-136-.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2023.03.005
    • Vancouver

      Fontes LRG, Mountford TS, Ungaretti D, Vares ME. Renewal contact processes: phase transition and survival [Internet]. Stochastic Processes and their Applications. 2023 ; 161 102-136-.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2023.03.005
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: ESTATÍSTICA DE PROCESSOS ESTOCÁSTICOS, REDES NEURAIS, DESIGUALDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE SANTIS, E. et al. Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons. Stochastic Processes and their Applications, v. 149, p. 224-247, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2022.03.016. Acesso em: 14 nov. 2024.
    • APA

      De Santis, E., Galves, A., Nappo, G., & Piccioni, M. (2022). Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons. Stochastic Processes and their Applications, 149, 224-247. doi:10.1016/j.spa.2022.03.016
    • NLM

      De Santis E, Galves A, Nappo G, Piccioni M. Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons [Internet]. Stochastic Processes and their Applications. 2022 ; 149 224-247.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2022.03.016
    • Vancouver

      De Santis E, Galves A, Nappo G, Piccioni M. Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons [Internet]. Stochastic Processes and their Applications. 2022 ; 149 224-247.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2022.03.016
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: GRANDES DESVIOS, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, v. 137, p. 149-166, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2021.03.011. Acesso em: 14 nov. 2024.
    • APA

      Logachov, A., Mogulskii, A., Prokopenko, E. I., & Yambartsev, A. (2021). Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, 137, 149-166. doi:10.1016/j.spa.2021.03.011
    • NLM

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
    • Vancouver

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PERCOLAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MOUNTFORD, Thomas S e VARES, Maria Eulalia. Contact process under renewals II. Stochastic Processes and their Applications, v. 130, n. 2, p. 1103-1118, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2019.04.008. Acesso em: 14 nov. 2024.
    • APA

      Fontes, L. R., Mountford, T. S., & Vares, M. E. (2020). Contact process under renewals II. Stochastic Processes and their Applications, 130( 2), 1103-1118. doi:10.1016/j.spa.2019.04.008
    • NLM

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
    • Vancouver

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEVALLIER, J et al. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, v. 129, n. 1, p. 1-27, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.02.007. Acesso em: 14 nov. 2024.
    • APA

      Chevallier, J., Duarte, A., Löcherbach, E., & Ost, G. (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, 129( 1), 1-27. doi:10.1016/j.spa.2018.02.007
    • NLM

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
    • Vancouver

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
  • Source: Stochastic Processes and their Applications. Unidades: IF, IME

    Subjects: MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MARCHETTI, Domingos Humberto Urbano e MOUNTFORD, Thomas S. Contact process under renewals I. Stochastic Processes and their Applications, v. 129, n. 8, p. 2903-2911, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.08.007. Acesso em: 14 nov. 2024.
    • APA

      Fontes, L. R., Marchetti, D. H. U., & Mountford, T. S. (2019). Contact process under renewals I. Stochastic Processes and their Applications, 129( 8), 2903-2911. doi:10.1016/j.spa.2018.08.007
    • NLM

      Fontes LR, Marchetti DHU, Mountford TS. Contact process under renewals I [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 8): 2903-2911.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2018.08.007
    • Vancouver

      Fontes LR, Marchetti DHU, Mountford TS. Contact process under renewals I [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 8): 2903-2911.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2018.08.007
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: ESTATÍSTICA E PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, G. M. Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, v. 128, n. 4, p. 1165-1207, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.07.003. Acesso em: 14 nov. 2024.
    • APA

      Belitsky, V., & Schutz, G. M. (2018). Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, 128( 4), 1165-1207. doi:10.1016/j.spa.2017.07.003
    • NLM

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
    • Vancouver

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, RETICULADOS, MODELO DE ISING, MUDANÇA DE FASE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e ENDO, Eric Ossami e VAN ENTER, Aernout C.D. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, v. 127, p. 4126-4138, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.03.023. Acesso em: 14 nov. 2024.
    • APA

      Bissacot, R., Endo, E. O., & van Enter, A. C. D. (2017). Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, 127, 4126-4138. doi:10.1016/j.spa.2017.03.023
    • NLM

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMENDÁRIZ, Inés e FERRARI, Pablo Augusto e SOPRANO LOTO, Nahuel. Phase transition for the dilute clock model. Stochastic Processes and their Applications, v. 125, n. 10, p. 3879-3892, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2015.05.010. Acesso em: 14 nov. 2024.
    • APA

      Armendáriz, I., Ferrari, P. A., & Soprano Loto, N. (2015). Phase transition for the dilute clock model. Stochastic Processes and their Applications, 125( 10), 3879-3892. doi:10.1016/j.spa.2015.05.010
    • NLM

      Armendáriz I, Ferrari PA, Soprano Loto N. Phase transition for the dilute clock model [Internet]. Stochastic Processes and their Applications. 2015 ; 125( 10): 3879-3892.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2015.05.010
    • Vancouver

      Armendáriz I, Ferrari PA, Soprano Loto N. Phase transition for the dilute clock model [Internet]. Stochastic Processes and their Applications. 2015 ; 125( 10): 3879-3892.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2015.05.010
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e SAUSSOL, Benoit. Hitting and returning to rare events for all alpha-mixing processes. Stochastic Processes and their Applications, v. 121, n. 2, p. 314-323, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2010.11.001. Acesso em: 14 nov. 2024.
    • APA

      Abadi, M. N., & Saussol, B. (2011). Hitting and returning to rare events for all alpha-mixing processes. Stochastic Processes and their Applications, 121( 2), 314-323. doi:10.1016/j.spa.2010.11.001
    • NLM

      Abadi MN, Saussol B. Hitting and returning to rare events for all alpha-mixing processes [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 2): 314-323.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2010.11.001
    • Vancouver

      Abadi MN, Saussol B. Hitting and returning to rare events for all alpha-mixing processes [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 2): 314-323.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2010.11.001
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARIVIER, A e LEONARDI, Florencia Graciela. Context tree selection: a unifying view. Stochastic Processes and their Applications, v. 121, n. 11, p. 2488-2506, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2011.06.012. Acesso em: 14 nov. 2024.
    • APA

      Garivier, A., & Leonardi, F. G. (2011). Context tree selection: a unifying view. Stochastic Processes and their Applications, 121( 11), 2488-2506. doi:10.1016/j.spa.2011.06.012
    • NLM

      Garivier A, Leonardi FG. Context tree selection: a unifying view [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 11): 2488-2506.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2011.06.012
    • Vancouver

      Garivier A, Leonardi FG. Context tree selection: a unifying view [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 11): 2488-2506.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2011.06.012
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, M. V. e POPOV, Serguei Yu e VACHKOVSKAIA, A. Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, v. 117, n. 4, p. 514-525, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2006.09.002. Acesso em: 14 nov. 2024.
    • APA

      Freire, M. V., Popov, S. Y., & Vachkovskaia, A. (2007). Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Processes and their Applications, 117( 4), 514-525. doi:10.1016/j.spa.2006.09.002
    • NLM

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2006.09.002
    • Vancouver

      Freire MV, Popov SY, Vachkovskaia A. Percolation for the stable marriage of Poisson and Lebesgue [Internet]. Stochastic Processes and their Applications. 2007 ; 117( 4): 514-525.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2006.09.002
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e NIEDERHAUSER, Beat M. Harness processes and harmonic crystals. Stochastic Processes and their Applications, v. 116, n. 6, p. 939-956, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2005.12.004. Acesso em: 14 nov. 2024.
    • APA

      Ferrari, P. A., & Niederhauser, B. M. (2006). Harness processes and harmonic crystals. Stochastic Processes and their Applications, 116( 6), 939-956. doi:10.1016/j.spa.2005.12.004
    • NLM

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
    • Vancouver

      Ferrari PA, Niederhauser BM. Harness processes and harmonic crystals [Internet]. Stochastic Processes and their Applications. 2006 ; 116( 6): 939-956.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2005.12.004
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto et al. The serial harness interacting with a wall. Stochastic Processes and their Applications, v. 114, n. 1, p. 175-190, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2004.05.003. Acesso em: 14 nov. 2024.
    • APA

      Ferrari, P. A., Fontes, L. R., Niederhauser, B. M., & Vachkovskaia, M. (2004). The serial harness interacting with a wall. Stochastic Processes and their Applications, 114( 1), 175-190. doi:10.1016/j.spa.2004.05.003
    • NLM

      Ferrari PA, Fontes LR, Niederhauser BM, Vachkovskaia M. The serial harness interacting with a wall [Internet]. Stochastic Processes and their Applications. 2004 ; 114( 1): 175-190.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2004.05.003
    • Vancouver

      Ferrari PA, Fontes LR, Niederhauser BM, Vachkovskaia M. The serial harness interacting with a wall [Internet]. Stochastic Processes and their Applications. 2004 ; 114( 1): 175-190.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2004.05.003
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: TEOREMAS LIMITES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDJEL, Enrique Daniel e FERRARI, Pablo Augusto e SIQUEIRA, A. Law of large numbers for the simple exclusion process. Stochastic Processes and their Applications, v. 113, n. 2, p. 217-233, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2004.04.003. Acesso em: 14 nov. 2024.
    • APA

      Andjel, E. D., Ferrari, P. A., & Siqueira, A. (2004). Law of large numbers for the simple exclusion process. Stochastic Processes and their Applications, 113( 2), 217-233. doi:10.1016/j.spa.2004.04.003
    • NLM

      Andjel ED, Ferrari PA, Siqueira A. Law of large numbers for the simple exclusion process [Internet]. Stochastic Processes and their Applications. 2004 ; 113( 2): 217-233.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2004.04.003
    • Vancouver

      Andjel ED, Ferrari PA, Siqueira A. Law of large numbers for the simple exclusion process [Internet]. Stochastic Processes and their Applications. 2004 ; 113( 2): 217-233.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.spa.2004.04.003
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MEDEIROS, Deborah Pereira de e VACHKOVSKAIA, Marina. Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, v. 103, n. 2, p. 257-276, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00210-7. Acesso em: 14 nov. 2024.
    • APA

      Fontes, L. R., Medeiros, D. P. de, & Vachkovskaia, M. (2003). Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, 103( 2), 257-276. doi:10.1016/s0304-4149(02)00210-7
    • NLM

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
    • Vancouver

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS DE POISSON

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e FERNÁNDEZ, Roberto e GARCIA, Nancy Lopes. Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, v. 102, n. 1, p. 63-88, 2002Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00180-1. Acesso em: 14 nov. 2024.
    • APA

      Ferrari, P. A., Fernández, R., & Garcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and ising models. Stochastic Processes and their Applications, 102( 1), 63-88. doi:10.1016/s0304-4149(02)00180-1
    • NLM

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
    • Vancouver

      Ferrari PA, Fernández R, Garcia NL. Perfect simulation for interacting point processes, loss networks and ising models [Internet]. Stochastic Processes and their Applications. 2002 ; 102( 1): 63-88.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(02)00180-1
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu. Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, v. 91, n. 1, p. 21-37, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00055-7. Acesso em: 14 nov. 2024.
    • APA

      Machado, F. P., Menshikov, M. V. 'evich, & Popov, S. Y. (2001). Recurrence and transience of multitype branching Random walks. Stochastic Processes and their Applications, 91( 1), 21-37. doi:10.1016/s0304-4149(00)00055-7
    • NLM

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7
    • Vancouver

      Machado FP, Menshikov MV'evich, Popov SY. Recurrence and transience of multitype branching Random walks [Internet]. Stochastic Processes and their Applications. 2001 ; 91( 1): 21-37.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/s0304-4149(00)00055-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024