Filtros : "Osaka Journal of Mathematics" Limpar

Filtros



Refine with date range


  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, v. 58, n. 4, p. 947-966, 2021Tradução . . Disponível em: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4. Acesso em: 10 fev. 2026.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2021). Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, 58( 4), 947-966. Recuperado de https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA DIFERENCIAL, GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SINHA, Raúl Oset e TARI, Farid. On the flat geometry of the cuspidal edge. Osaka Journal of Mathematics, v. 55, n. 3, p. 393-421, 2018Tradução . . Disponível em: https://projecteuclid.org/euclid.ojm/1530691235. Acesso em: 10 fev. 2026.
    • APA

      Sinha, R. O., & Tari, F. (2018). On the flat geometry of the cuspidal edge. Osaka Journal of Mathematics, 55( 3), 393-421. Recuperado de https://projecteuclid.org/euclid.ojm/1530691235
    • NLM

      Sinha RO, Tari F. On the flat geometry of the cuspidal edge [Internet]. Osaka Journal of Mathematics. 2018 ; 55( 3): 393-421.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/euclid.ojm/1530691235
    • Vancouver

      Sinha RO, Tari F. On the flat geometry of the cuspidal edge [Internet]. Osaka Journal of Mathematics. 2018 ; 55( 3): 393-421.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/euclid.ojm/1530691235
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio. Zeta determinant and operator determinants. Osaka Journal of Mathematics, v. 48, n. 1, p. 41-50, 2011Tradução . . Acesso em: 10 fev. 2026.
    • APA

      Spreafico, M. F. (2011). Zeta determinant and operator determinants. Osaka Journal of Mathematics, 48( 1), 41-50.
    • NLM

      Spreafico MF. Zeta determinant and operator determinants. Osaka Journal of Mathematics. 2011 ; 48( 1): 41-50.[citado 2026 fev. 10 ]
    • Vancouver

      Spreafico MF. Zeta determinant and operator determinants. Osaka Journal of Mathematics. 2011 ; 48( 1): 41-50.[citado 2026 fev. 10 ]
  • Source: Osaka Journal of Mathematics. Unidade: IME

    Assunto: ESPAÇOS FIBRADOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOLD, Albrect e GONÇALVES, Daciberg Lima. Self-coincidence of fibre maps. Osaka Journal of Mathematics, v. 42, n. 2, p. 291-307, 2005Tradução . . Disponível em: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full. Acesso em: 10 fev. 2026.
    • APA

      Dold, A., & Gonçalves, D. L. (2005). Self-coincidence of fibre maps. Osaka Journal of Mathematics, 42( 2), 291-307. Recuperado de https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full
    • NLM

      Dold A, Gonçalves DL. Self-coincidence of fibre maps [Internet]. Osaka Journal of Mathematics. 2005 ; 42( 2): 291-307.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full
    • Vancouver

      Dold A, Gonçalves DL. Self-coincidence of fibre maps [Internet]. Osaka Journal of Mathematics. 2005 ; 42( 2): 291-307.[citado 2026 fev. 10 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full
  • Source: Osaka Journal of Mathematics. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Fabiano Gustavo Braga e SALVAI, M. Solenoidal unit vector fields with minimum energy. Osaka Journal of Mathematics, v. 41, n. 3, p. 533-544, 2004Tradução . . Disponível em: https://doi.org/10.18910/4134. Acesso em: 10 fev. 2026.
    • APA

      Brito, F. G. B., & Salvai, M. (2004). Solenoidal unit vector fields with minimum energy. Osaka Journal of Mathematics, 41( 3), 533-544. doi:10.18910/4134
    • NLM

      Brito FGB, Salvai M. Solenoidal unit vector fields with minimum energy [Internet]. Osaka Journal of Mathematics. 2004 ; 41( 3): 533-544.[citado 2026 fev. 10 ] Available from: https://doi.org/10.18910/4134
    • Vancouver

      Brito FGB, Salvai M. Solenoidal unit vector fields with minimum energy [Internet]. Osaka Journal of Mathematics. 2004 ; 41( 3): 533-544.[citado 2026 fev. 10 ] Available from: https://doi.org/10.18910/4134
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Assunto: TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e DACCACH, Janey Antônio e SAEKI, Osamu. On R-bordism of maps and obtruction to topological embeddings. Osaka Journal of Mathematics, v. 37, p. 527-535, 2000Tradução . . Acesso em: 10 fev. 2026.
    • APA

      Biasi, C., Daccach, J. A., & Saeki, O. (2000). On R-bordism of maps and obtruction to topological embeddings. Osaka Journal of Mathematics, 37, 527-535.
    • NLM

      Biasi C, Daccach JA, Saeki O. On R-bordism of maps and obtruction to topological embeddings. Osaka Journal of Mathematics. 2000 ; 37 527-535.[citado 2026 fev. 10 ]
    • Vancouver

      Biasi C, Daccach JA, Saeki O. On R-bordism of maps and obtruction to topological embeddings. Osaka Journal of Mathematics. 2000 ; 37 527-535.[citado 2026 fev. 10 ]
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA, SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e SAEKI, O. On bordism invariance an obstruction topologial embeddings. Osaka Journal of Mathematics, v. 33, n. 3 , p. 729-35, 1996Tradução . . Acesso em: 10 fev. 2026.
    • APA

      Biasi, C., & Saeki, O. (1996). On bordism invariance an obstruction topologial embeddings. Osaka Journal of Mathematics, 33( 3 ), 729-35.
    • NLM

      Biasi C, Saeki O. On bordism invariance an obstruction topologial embeddings. Osaka Journal of Mathematics. 1996 ;33( 3 ): 729-35.[citado 2026 fev. 10 ]
    • Vancouver

      Biasi C, Saeki O. On bordism invariance an obstruction topologial embeddings. Osaka Journal of Mathematics. 1996 ;33( 3 ): 729-35.[citado 2026 fev. 10 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026