Self-coincidence of fibre maps (2005)
- Authors:
- Autor USP: GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- Assunto: ESPAÇOS FIBRADOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Osaka Journal of Mathematics
- ISSN: 0030-6126
- Volume/Número/Paginação/Ano: v. 42, n. 2, p. 291-307, 2005
-
ABNT
DOLD, Albrect e GONÇALVES, Daciberg Lima. Self-coincidence of fibre maps. Osaka Journal of Mathematics, v. 42, n. 2, p. 291-307, 2005Tradução . . Disponível em: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full. Acesso em: 22 jan. 2026. -
APA
Dold, A., & Gonçalves, D. L. (2005). Self-coincidence of fibre maps. Osaka Journal of Mathematics, 42( 2), 291-307. Recuperado de https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full -
NLM
Dold A, Gonçalves DL. Self-coincidence of fibre maps [Internet]. Osaka Journal of Mathematics. 2005 ; 42( 2): 291-307.[citado 2026 jan. 22 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full -
Vancouver
Dold A, Gonçalves DL. Self-coincidence of fibre maps [Internet]. Osaka Journal of Mathematics. 2005 ; 42( 2): 291-307.[citado 2026 jan. 22 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-42/issue-2/Self-coincidence-of-fibre-maps/ojm/1153494379.full - Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane
- Realization of primitive branched coverings over closed surfaces following the Hurwitz approach
- Fixed points on Klein bottle fiber bundles over the circle
- Coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations
- Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2
- Twisted serre's spectral sequence and shapiro's lemma
- The R∞-property for braid groups over orientable surfaces
- Borsuk-Ulam property for graphs
- Twisted conjugacy classes in wreath products
- On groups where the twisted conjugacy class of the unit element is a subgroup
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
