Filtros : "Neural Computing and Applications" Removido: "APRENDIZADO COMPUTACIONAL" Limpar

Filtros



Refine with date range


  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: EMOÇÕES, VOZ, REDES NEURAIS, RECONHECIMENTO DE VOZ

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA FILHO, Geraldo Pereira et al. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, v. 36, p. 19939–19950, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10249-4. Acesso em: 16 jun. 2025.
    • APA

      Rocha Filho, G. P., Meneguette, R. I., Mendonça, F. L. L. de, Enamoto, L. M., Pessin, G., & Gonçalves, V. P. (2024). Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, 36, 19939–19950. doi:10.1007/s00521-024-10249-4
    • NLM

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
    • Vancouver

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
  • Source: Neural Computing and Applications. Conference titles: LatinX in AI at NeurIPS. Unidade: IME

    Assunto: MATEMÁTICA APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POLO, Felipe Maia e VICENTE, Renato. Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s00521-021-06615-1. Acesso em: 16 jun. 2025. , 2023
    • APA

      Polo, F. M., & Vicente, R. (2023). Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s00521-021-06615-1
    • NLM

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
    • Vancouver

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
  • Source: Neural Computing and Applications. Unidade: EP

    Assunto: SISTEMAS EMBUTIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Miguel Angelo de Abreu de e DEL MORAL HERNANDEZ, Emilio e PIRES, Ricardo. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, v. 30, n. 12, p. 3759-3771, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-2957-0. Acesso em: 16 jun. 2025.
    • APA

      Sousa, M. A. de A. de, Del Moral Hernandez, E., & Pires, R. (2018). OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, 30( 12), 3759-3771. doi:10.1007/s00521-017-2957-0
    • NLM

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
    • Vancouver

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
  • Source: Neural Computing and Applications. Unidade: EACH

    Subjects: RECONHECIMENTO DE PADRÕES, INTELIGÊNCIA ARTIFICIAL, ANÁLISE DO MOVIMENTO HUMANO, ELETROMIOGRAFIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Clodoaldo Aparecido de Moraes et al. Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, v. 27, n. 3, p. 791-804, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1953-5. Acesso em: 16 jun. 2025.
    • APA

      Lima, C. A. de M., Coelho, A. L. V., Madeo, R. C. B., & Peres, S. M. (2016). Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, 27( 3), 791-804. doi:10.1007/s00521-015-1953-5
    • NLM

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1953-5
    • Vancouver

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1953-5
  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE, INFERÊNCIA BAYESIANA, ESTATÍSTICA APLICADA, ALGORITMOS GENÉTICOS, MODELOS EM SÉRIES TEMPORAIS, ELASTICIDADE, COMPUTAÇÃO EM NUVEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MESSIAS, Valter Rogério et al. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Computing and Applications, v. No 2016, n. 8, p. 2383-2406, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-2133-3. Acesso em: 16 jun. 2025.
    • APA

      Messias, V. R., Estrella, J. C., Ehlers, R. S., Santana, M. J., Santana, R. H. C., & Reiff-Marganiec, S. (2016). Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure. Neural Computing and Applications, No 2016( 8), 2383-2406. doi:10.1007/s00521-015-2133-3
    • NLM

      Messias VR, Estrella JC, Ehlers RS, Santana MJ, Santana RHC, Reiff-Marganiec S. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure [Internet]. Neural Computing and Applications. 2016 ; No 2016( 8): 2383-2406.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-2133-3
    • Vancouver

      Messias VR, Estrella JC, Ehlers RS, Santana MJ, Santana RHC, Reiff-Marganiec S. Combining time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud infrastructure [Internet]. Neural Computing and Applications. 2016 ; No 2016( 8): 2383-2406.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-2133-3
  • Source: Neural Computing and Applications. Unidades: EESC, ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 16 jun. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025