Source: Journal of Nonlinear Science. Unidade: ICMC
Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, EQUAÇÕES DE NAVIER-STOKES, MECÂNICA DOS FLUÍDOS
ABNT
CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e MOURA, Rafael de Oliveira. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space. Journal of Nonlinear Science, v. 35, n. 4, p. 1-35, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00332-025-10169-0. Acesso em: 08 out. 2025.APA
Carvalho, A. N. de, Langa, J. A., & Moura, R. de O. (2025). Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space. Journal of Nonlinear Science, 35( 4), 1-35. doi:10.1007/s00332-025-10169-0NLM
Carvalho AN de, Langa JA, Moura R de O. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space [Internet]. Journal of Nonlinear Science. 2025 ; 35( 4): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00332-025-10169-0Vancouver
Carvalho AN de, Langa JA, Moura R de O. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space [Internet]. Journal of Nonlinear Science. 2025 ; 35( 4): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00332-025-10169-0