Exportar registro bibliográfico


Hydrodynamic vortex on surfaces (2017)

  • Authors:
  • Unidade: IME
  • DOI: 10.1007/s00332-017-9380-7
  • Keywords: Point vortex dynamics; Special metrics; Robin function; Euler equation weak solution; Steady vortex metric
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00332-017-9380-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RAGAZZO, Clodoaldo Grotta; VIGLIONI, Humberto Henrique de Barros. Hydrodynamic vortex on surfaces. Journal of Nonlinear Science, New York, Springer, v. 27, n. 5, p. 1609-1640, 2017. Disponível em: < http://dx.doi.org/10.1007/s00332-017-9380-7 > DOI: 10.1007/s00332-017-9380-7.
    • APA

      Ragazzo, C. G., & Viglioni, H. H. de B. (2017). Hydrodynamic vortex on surfaces. Journal of Nonlinear Science, 27( 5), 1609-1640. doi:10.1007/s00332-017-9380-7
    • NLM

      Ragazzo CG, Viglioni HH de B. Hydrodynamic vortex on surfaces [Internet]. Journal of Nonlinear Science. 2017 ; 27( 5): 1609-1640.Available from: http://dx.doi.org/10.1007/s00332-017-9380-7
    • Vancouver

      Ragazzo CG, Viglioni HH de B. Hydrodynamic vortex on surfaces [Internet]. Journal of Nonlinear Science. 2017 ; 27( 5): 1609-1640.Available from: http://dx.doi.org/10.1007/s00332-017-9380-7

    Referências citadas na obra
    Aboudi, N.: Geodesics for the capacity metric in doubly connected domains. Complex Var. 50, 7–22 (2005)
    Aref, H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345–389 (1983)
    Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex Crystals. Adv. Appl. Mech. 39, 1–79 (2003)
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)
    Aubin, T.: Some Nonlinear Problems in Riemannian Geometry, 3rd edn. Springer, Berlin (1998)
    Beardon, A.F.: A Primer on Riemann Surfaces. London Math. Soc. Lect. Notes Ser. 78, Cambridge University Press (1984)
    Boatto, S., Koiller, J.: Vortices on closed surfaces, arXiv:0802.4313 (2008)
    Boatto, S., Koiller, J.: Vortices on closed surfaces. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics The Legacy of Jerry Marsden, pp. 185–237. Springer, Berlin (2013)
    Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 12, 863–870 (1977)
    Bolotin, S., Negrini, P.: Asymptotic solutions of Lagrangian systems with gyroscopic forces. Nonlinear Diff. Eq. Appl. NoDEA 2, 417–444 (1995)
    Borisov, A.V., Mamaev, I.S., Ramodanov, S.M.: Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface. Regul. Chaotic Dyn. 15, 440461 (2010)
    Crowdy, D., Marshall, J.: Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains. Proc. R. Soc. A 461, 24772501 (2005)
    de Rham, G.: Differentiable Manifolds. Springer, Berlin (1984)
    Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A 471, 20140890 (2015)
    Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydromechanics (Technical report, http://www.math.kth.se/~gbjorn/ ) (1997)
    Friedrichs, K.O.: Special Topics in Fluid Dynamics. Gordon and Breach, New York (1966)
    Grotta Ragazzo, C., Koiller, J., Oliva, W.: On the motion of two-dimensional vortices with mass. J. Nonlinear Sci. 4, 375–418 (1994)
    Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains, (Technical Report, http://www.math.kth.se/~gbjorn/ ) (1979)
    Hally, D.: Motion of Vortex in Thin Films, PhD Thesis, The University of British Columbia, Canada (1979)
    Hally, D.: Stability of streets of vortices on surfaces of revolution with a reflection symmetry. J. Math. Phys. 21, 211–217 (1980)
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)
    He, Z.-X., Schramm, O.: Fixed points. Koebe uniformization and circle packings. Ann. Math. 137, 369–406 (1993)
    Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn 56, 4203–4206 (1987)
    Kimura, Y.: Vortex motion on surfaces with constant curvature. Proc. R. Soc. Lond. A 455, 245259 (1999)
    Lamb, H.: Hydrodynamics, 4th edn. Cambridge University Press, Cambridge (1916)
    Llewellyn Smith, S.G.: How do singularities move in potential flow? Physica D 240, 16441651 (2011)
    Li, P.: Curvature and Function Theory on Riemannian Manifolds, Survey in Differential Geometry in Honor of Atiyah, Bott, Hirzebruch and Singer, VII, International Press, Cambridge, 71–111. (2000)
    Lin, C.C.: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function. Proc. Nat. Acad. Sci. USA 27, 570575 (1941). (see also the second part of the paper in the same volume p. 575-577)
    Lin, C.C.: On the Motion of Vortices in Two Dimensions, University of Toronto Studies, Applied Mathematics Series. University of Toronto Press, (1943)
    Littlejohn, R.G.: “Hamiltonian Theory of Guiding Center Motion”, PhD Thesis, Lawrence Berkeley Lab (eletronically available at: http://escholarship.org/uc/item/6b31q0xd ) (1980)
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)
    Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)
    Newton, P.: The N-vortex Problem: Analytical Techniques. Springer, New York (2001)
    Newton, P.: Point vortex dynamics in the post-Aref era, Fluid Dyn. Res. 46 031401 (11pp) (2014)
    Oliva, W.M.: “Geometric Mechanics”, Lect. Notes Math. 1798, Springer, Heidelberg (2002)
    Paternain, G.P.: Geodesic Flows. Birkhas̈er, Boston (1999)
    Richards, I.: On the classification of noncompact surfaces. Trans. AMS 106, 259–269 (1963)
    Sakajo, T., Shimizu, Y.: Point vortex interactions on a toroidal surface. Proc. R. Soc. A 472, 20160271 (2016)
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 2, 3rd edn. Publish or Perish, Houston (1999)
    Turner, A.M., Vitelli, V., Nelson, D.R.: Vortices on curved surfaces. Rev. Modern Phys. 82, 1301–1348 (2010)
    Viglioni, H.H.B.: Vortex Dynamics on Surfaces and applications to the problem of two vortices on the torus, Doctorate thesis (in Portuguese), Universidade de São Paulo (2013)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020