Filtros : "Journal of Geometry and Physics" Removido: "Indexado no Science Citation Index" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES, IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando et al. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, v. 213, p. 1-9, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2025.105495. Acesso em: 07 out. 2025.
    • APA

      Manfio, F., Santos, J. B. M. dos, Santos, J. P. dos, & Veken, J. V. der. (2025). Hypersurfaces of S³ × R and H³ × R with constant principal curvatures. Journal of Geometry and Physics, 213, 1-9. doi:10.1016/j.geomphys.2025.105495
    • NLM

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
    • Vancouver

      Manfio F, Santos JBM dos, Santos JP dos, Veken JV der. Hypersurfaces of S³ × R and H³ × R with constant principal curvatures [Internet]. Journal of Geometry and Physics. 2025 ; 213 1-9.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2025.105495
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 07 out. 2025.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, GEOMETRIA DIFERENCIAL CLÁSSICA, CONVEXIDADE, SUPERFÍCIES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Marco Antônio do Couto. Möbius inversion of surfaces in the Minkowski 3-space. Journal of Geometry and Physics, v. 190, p. 1-7, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104853. Acesso em: 07 out. 2025.
    • APA

      Fernandes, M. A. do C. (2023). Möbius inversion of surfaces in the Minkowski 3-space. Journal of Geometry and Physics, 190, 1-7. doi:10.1016/j.geomphys.2023.104853
    • NLM

      Fernandes MA do C. Möbius inversion of surfaces in the Minkowski 3-space [Internet]. Journal of Geometry and Physics. 2023 ; 190 1-7.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104853
    • Vancouver

      Fernandes MA do C. Möbius inversion of surfaces in the Minkowski 3-space [Internet]. Journal of Geometry and Physics. 2023 ; 190 1-7.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104853
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA HIPERBÓLICA E ELÍTICA, RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Rafael e REIS JUNIOR, João dos e GROSSI, Carlos Henrique. On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, v. 180, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2022.104629. Acesso em: 07 out. 2025.
    • APA

      Ferreira, R., Reis Junior, J. dos, & Grossi, C. H. (2022). On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, 180, 1-13. doi:10.1016/j.geomphys.2022.104629
    • NLM

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
    • Vancouver

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: TEORIA DE CAMPOS, PSEUDOGRUPOS, GRUPOIDES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Bruno T e FORGER, Frank Michael e PÊGAS, Luiz Henrique Pereira. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, v. 169, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2021.104340. Acesso em: 07 out. 2025.
    • APA

      Costa, B. T., Forger, F. M., & Pêgas, L. H. P. (2021). Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem. Journal of Geometry and Physics, 169. doi:10.1016/j.geomphys.2021.104340
    • NLM

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340
    • Vancouver

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama s theorem [Internet]. Journal of Geometry and Physics. 2021 ; 169[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2021.104340
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: GRUPOIDES, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ, Cristian e WALDRON, James. On the Lie 2-algebra of sections of an LA-groupoid. Journal of Geometry and Physics, v. 145, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2019.07.005. Acesso em: 07 out. 2025.
    • APA

      Ortiz, C., & Waldron, J. (2019). On the Lie 2-algebra of sections of an LA-groupoid. Journal of Geometry and Physics, 145. doi:10.1016/j.geomphys.2019.07.005
    • NLM

      Ortiz C, Waldron J. On the Lie 2-algebra of sections of an LA-groupoid [Internet]. Journal of Geometry and Physics. 2019 ; 145[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2019.07.005
    • Vancouver

      Ortiz C, Waldron J. On the Lie 2-algebra of sections of an LA-groupoid [Internet]. Journal of Geometry and Physics. 2019 ; 145[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2019.07.005
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: VARIEDADES COMPLEXAS, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOSSA, Roberto. On the diastatic entropy and C1-rigidity of complex hyperbolic manifolds. Journal of Geometry and Physics, v. 142, p. 213-228, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2019.04.006. Acesso em: 07 out. 2025.
    • APA

      Mossa, R. (2019). On the diastatic entropy and C1-rigidity of complex hyperbolic manifolds. Journal of Geometry and Physics, 142, 213-228. doi:10.1016/j.geomphys.2019.04.006
    • NLM

      Mossa R. On the diastatic entropy and C1-rigidity of complex hyperbolic manifolds [Internet]. Journal of Geometry and Physics. 2019 ; 142 213-228.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2019.04.006
    • Vancouver

      Mossa R. On the diastatic entropy and C1-rigidity of complex hyperbolic manifolds [Internet]. Journal of Geometry and Physics. 2019 ; 142 213-228.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2019.04.006
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: TEORIA DE GAUGE, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Bruno Tadeu e FORGER, Frank Michael e PÊGAS, Luiz Henrique Pereira. Lie groupoids in classical field theory I: Noether’s theorem. Journal of Geometry and Physics, v. 131, p. 220-245, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2018.03.015. Acesso em: 07 out. 2025.
    • APA

      Costa, B. T., Forger, F. M., & Pêgas, L. H. P. (2018). Lie groupoids in classical field theory I: Noether’s theorem. Journal of Geometry and Physics, 131, 220-245. doi:10.1016/j.geomphys.2018.03.015
    • NLM

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory I: Noether’s theorem [Internet]. Journal of Geometry and Physics. 2018 ; 131 220-245.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2018.03.015
    • Vancouver

      Costa BT, Forger FM, Pêgas LHP. Lie groupoids in classical field theory I: Noether’s theorem [Internet]. Journal of Geometry and Physics. 2018 ; 131 220-245.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2018.03.015
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Fabiano G. e GOMES, André de Oliveira e MESQUITA, Robson Martins de. A theorem about energy and volume of vector fields with the “proportional volume property”. Journal of Geometry and Physics, v. 100, p. 96-100, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2015.11.003. Acesso em: 07 out. 2025.
    • APA

      Brito, F. G., Gomes, A. de O., & Mesquita, R. M. de. (2016). A theorem about energy and volume of vector fields with the “proportional volume property”. Journal of Geometry and Physics, 100, 96-100. doi:10.1016/j.geomphys.2015.11.003
    • NLM

      Brito FG, Gomes A de O, Mesquita RM de. A theorem about energy and volume of vector fields with the “proportional volume property” [Internet]. Journal of Geometry and Physics. 2016 ; 100 96-100.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2015.11.003
    • Vancouver

      Brito FG, Gomes A de O, Mesquita RM de. A theorem about energy and volume of vector fields with the “proportional volume property” [Internet]. Journal of Geometry and Physics. 2016 ; 100 96-100.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2015.11.003
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Ángel e LICHTENFELZ, Leandro Augusto e PICCIONE, Paolo. Almost isometries of non-reversible metrics with applications to stationary spacetimes. Journal of Geometry and Physics, v. 89, p. 38-49, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2014.12.001. Acesso em: 07 out. 2025.
    • APA

      Javaloyes, M. Á., Lichtenfelz, L. A., & Piccione, P. (2015). Almost isometries of non-reversible metrics with applications to stationary spacetimes. Journal of Geometry and Physics, 89, 38-49. doi:10.1016/j.geomphys.2014.12.001
    • NLM

      Javaloyes MÁ, Lichtenfelz LA, Piccione P. Almost isometries of non-reversible metrics with applications to stationary spacetimes [Internet]. Journal of Geometry and Physics. 2015 ; 89 38-49.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2014.12.001
    • Vancouver

      Javaloyes MÁ, Lichtenfelz LA, Piccione P. Almost isometries of non-reversible metrics with applications to stationary spacetimes [Internet]. Journal of Geometry and Physics. 2015 ; 89 38-49.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2014.12.001
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUSSAN, Martha P e MAGID, M. The Björling problem for timelike surfaces in 'R POT.4 IND.2'. Journal of Geometry and Physics, v. 73, p. 187-199, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2013.06.004. Acesso em: 07 out. 2025.
    • APA

      Dussan, M. P., & Magid, M. (2013). The Björling problem for timelike surfaces in 'R POT.4 IND.2'. Journal of Geometry and Physics, 73, 187-199. doi:10.1016/j.geomphys.2013.06.004
    • NLM

      Dussan MP, Magid M. The Björling problem for timelike surfaces in 'R POT.4 IND.2' [Internet]. Journal of Geometry and Physics. 2013 ; 73 187-199.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2013.06.004
    • Vancouver

      Dussan MP, Magid M. The Björling problem for timelike surfaces in 'R POT.4 IND.2' [Internet]. Journal of Geometry and Physics. 2013 ; 73 187-199.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2013.06.004
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: TEORIA DE GAUGE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e SOARES, Bruno Learth. Local symmetries in gauge theories in a finite-dimensional setting. Journal of Geometry and Physics, v. 62, n. 9, p. 1925-1938, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2012.05.003. Acesso em: 07 out. 2025.
    • APA

      Forger, F. M., & Soares, B. L. (2012). Local symmetries in gauge theories in a finite-dimensional setting. Journal of Geometry and Physics, 62( 9), 1925-1938. doi:10.1016/j.geomphys.2012.05.003
    • NLM

      Forger FM, Soares BL. Local symmetries in gauge theories in a finite-dimensional setting [Internet]. Journal of Geometry and Physics. 2012 ; 62( 9): 1925-1938.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2012.05.003
    • Vancouver

      Forger FM, Soares BL. Local symmetries in gauge theories in a finite-dimensional setting [Internet]. Journal of Geometry and Physics. 2012 ; 62( 9): 1925-1938.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2012.05.003
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HARTMANN JUNIOR, Luiz Roberto e SPREAFICO, Mauro Flávio. The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, v. 61, n. 3, p. 624-657, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2010.11.011. Acesso em: 07 out. 2025.
    • APA

      Hartmann Junior, L. R., & Spreafico, M. F. (2011). The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, 61( 3), 624-657. doi:10.1016/j.geomphys.2010.11.011
    • NLM

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
    • Vancouver

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANCIAUX, Henri e GUILFOYLE, Brendan e ROMON, Pascal. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. Journal of Geometry and Physics, v. 61, n. 1, p. 237-247, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2010.09.017. Acesso em: 07 out. 2025.
    • APA

      Anciaux, H., Guilfoyle, B., & Romon, P. (2011). Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. Journal of Geometry and Physics, 61( 1), 237-247. doi:10.1016/j.geomphys.2010.09.017
    • NLM

      Anciaux H, Guilfoyle B, Romon P. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface [Internet]. Journal of Geometry and Physics. 2011 ; 61( 1): 237-247.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2010.09.017
    • Vancouver

      Anciaux H, Guilfoyle B, Romon P. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface [Internet]. Journal of Geometry and Physics. 2011 ; 61( 1): 237-247.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2010.09.017
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Assunto: SUPERFÍCIES MÍNIMAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTALDO, Stefano e ONNIS, Irene Ignazia. Geodesics on an invariant surface. Journal of Geometry and Physics, v. 61, n. 8, p. 1385-1395, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2011.03.002. Acesso em: 07 out. 2025.
    • APA

      Montaldo, S., & Onnis, I. I. (2011). Geodesics on an invariant surface. Journal of Geometry and Physics, 61( 8), 1385-1395. doi:10.1016/j.geomphys.2011.03.002
    • NLM

      Montaldo S, Onnis II. Geodesics on an invariant surface [Internet]. Journal of Geometry and Physics. 2011 ; 61( 8): 1385-1395.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2011.03.002
    • Vancouver

      Montaldo S, Onnis II. Geodesics on an invariant surface [Internet]. Journal of Geometry and Physics. 2011 ; 61( 8): 1385-1395.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2011.03.002
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASPERTI, Antonio Carlos e CHAVES, Rosa Maria dos Santos Barreiro e VALÉRIO, Barbara Corominas. Ruled Weingarten hypersurfaces in the Lorentz-Minkowski space and in de Sitter space. Journal of Geometry and Physics, v. 60, n. 4, p. 553-561, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2009.12.013. Acesso em: 07 out. 2025.
    • APA

      Asperti, A. C., Chaves, R. M. dos S. B., & Valério, B. C. (2010). Ruled Weingarten hypersurfaces in the Lorentz-Minkowski space and in de Sitter space. Journal of Geometry and Physics, 60( 4), 553-561. doi:10.1016/j.geomphys.2009.12.013
    • NLM

      Asperti AC, Chaves RM dos SB, Valério BC. Ruled Weingarten hypersurfaces in the Lorentz-Minkowski space and in de Sitter space [Internet]. Journal of Geometry and Physics. 2010 ; 60( 4): 553-561.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2009.12.013
    • Vancouver

      Asperti AC, Chaves RM dos SB, Valério BC. Ruled Weingarten hypersurfaces in the Lorentz-Minkowski space and in de Sitter space [Internet]. Journal of Geometry and Physics. 2010 ; 60( 4): 553-561.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2009.12.013
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, André e COX, Ben e FUTORNY, Vyacheslav. Free field realizations of the elliptic affine Lie algebra sl(2,R) circle plus (ΩR/dR). Journal of Geometry and Physics, v. 59, n. 9, p. 1258-1270, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2009.06.007. Acesso em: 07 out. 2025.
    • APA

      Bueno, A., Cox, B., & Futorny, V. (2009). Free field realizations of the elliptic affine Lie algebra sl(2,R) circle plus (ΩR/dR). Journal of Geometry and Physics, 59( 9), 1258-1270. doi:10.1016/j.geomphys.2009.06.007
    • NLM

      Bueno A, Cox B, Futorny V. Free field realizations of the elliptic affine Lie algebra sl(2,R) circle plus (ΩR/dR) [Internet]. Journal of Geometry and Physics. 2009 ; 59( 9): 1258-1270.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2009.06.007
    • Vancouver

      Bueno A, Cox B, Futorny V. Free field realizations of the elliptic affine Lie algebra sl(2,R) circle plus (ΩR/dR) [Internet]. Journal of Geometry and Physics. 2009 ; 59( 9): 1258-1270.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2009.06.007
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Assunto: SUPERFÍCIES MÍNIMAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTALDO, Stefano e ONNIS, Irene Ignazia. Biharmonic curves on an invariant surface. Journal of Geometry and Physics, v. 59, n. 3, p. 391-399, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2008.11.011. Acesso em: 07 out. 2025.
    • APA

      Montaldo, S., & Onnis, I. I. (2009). Biharmonic curves on an invariant surface. Journal of Geometry and Physics, 59( 3), 391-399. doi:10.1016/j.geomphys.2008.11.011
    • NLM

      Montaldo S, Onnis II. Biharmonic curves on an invariant surface [Internet]. Journal of Geometry and Physics. 2009 ; 59( 3): 391-399.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2008.11.011
    • Vancouver

      Montaldo S, Onnis II. Biharmonic curves on an invariant surface [Internet]. Journal of Geometry and Physics. 2009 ; 59( 3): 391-399.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2008.11.011
  • Source: Journal of Geometry and Physics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUSSAN, Martha P e MAGID, M. Conformally flat Lorentzian hypersurfaces in the conformal compactification of Lorentz space. Journal of Geometry and Physics, v. 57, n. 12, p. 2466-2482, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2007.08.005. Acesso em: 07 out. 2025.
    • APA

      Dussan, M. P., & Magid, M. (2007). Conformally flat Lorentzian hypersurfaces in the conformal compactification of Lorentz space. Journal of Geometry and Physics, 57( 12), 2466-2482. doi:10.1016/j.geomphys.2007.08.005
    • NLM

      Dussan MP, Magid M. Conformally flat Lorentzian hypersurfaces in the conformal compactification of Lorentz space [Internet]. Journal of Geometry and Physics. 2007 ; 57( 12): 2466-2482.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2007.08.005
    • Vancouver

      Dussan MP, Magid M. Conformally flat Lorentzian hypersurfaces in the conformal compactification of Lorentz space [Internet]. Journal of Geometry and Physics. 2007 ; 57( 12): 2466-2482.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2007.08.005
  • Source: Journal of Geometry and Physics. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASIL JR., Aldir Chaves e CHAVES, Rosa Maria dos Santos Barreiro e BARROS, Maxwell Mariano de. Complete spacelike submanifolds with parallel mean curvature vector in a semi-Riemannian space form. Journal of Geometry and Physics, v. 56, n. 10, p. 2177-2188, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2005.11.015. Acesso em: 07 out. 2025.
    • APA

      Brasil Jr., A. C., Chaves, R. M. dos S. B., & Barros, M. M. de. (2006). Complete spacelike submanifolds with parallel mean curvature vector in a semi-Riemannian space form. Journal of Geometry and Physics, 56( 10), 2177-2188. doi:10.1016/j.geomphys.2005.11.015
    • NLM

      Brasil Jr. AC, Chaves RM dos SB, Barros MM de. Complete spacelike submanifolds with parallel mean curvature vector in a semi-Riemannian space form [Internet]. Journal of Geometry and Physics. 2006 ; 56( 10): 2177-2188.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2005.11.015
    • Vancouver

      Brasil Jr. AC, Chaves RM dos SB, Barros MM de. Complete spacelike submanifolds with parallel mean curvature vector in a semi-Riemannian space form [Internet]. Journal of Geometry and Physics. 2006 ; 56( 10): 2177-2188.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.geomphys.2005.11.015

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025