Filtros : "Journal of Evolution Equations" Removido: "EQUAÇÕES DIFERENCIAIS PARCIAIS" Limpar

Filtros



Refine with date range


  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, v. 25, n. 1, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-01039-5. Acesso em: 07 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2025). Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, 25( 1), 1-29. doi:10.1007/s00028-024-01039-5
    • NLM

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
    • Vancouver

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, APROXIMAÇÃO, SEMIGRUPOS DE OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e SANTOS, Lucas Araújo. Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, v. 22, n. 2, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00028-022-00811-9. Acesso em: 07 out. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Santos, L. A. (2022). Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, 22( 2), 1-18. doi:10.1007/s00028-022-00811-9
    • NLM

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-022-00811-9
    • Vancouver

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-022-00811-9
  • Source: Journal of Evolution Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARDILA, Alex H. e CELY, Liliana e GOLOSHCHAPOVA, Nataliia. Instability of ground states for the NLS equation with potential on the star graph. Journal of Evolution Equations, n. 21, p. 3703–3732, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00028-021-00670-w. Acesso em: 07 out. 2025.
    • APA

      Ardila, A. H., Cely, L., & Goloshchapova, N. (2021). Instability of ground states for the NLS equation with potential on the star graph. Journal of Evolution Equations, ( 21), 3703–3732. doi:10.1007/s00028-021-00670-w
    • NLM

      Ardila AH, Cely L, Goloshchapova N. Instability of ground states for the NLS equation with potential on the star graph [Internet]. Journal of Evolution Equations. 2021 ;( 21): 3703–3732.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-021-00670-w
    • Vancouver

      Ardila AH, Cely L, Goloshchapova N. Instability of ground states for the NLS equation with potential on the star graph [Internet]. Journal of Evolution Equations. 2021 ;( 21): 3703–3732.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00028-021-00670-w

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025