Filtros : "Journal of Differential Geometry" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Geometry. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO, GEOMETRIA RIEMANNIANA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo e SANTORO, Bianca. Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, v. 103, n. 2, p. 191-205, 2016Tradução . . Disponível em: https://doi.org/10.4310/jdg/1463404117. Acesso em: 29 jan. 2026.
    • APA

      Bettiol, R. G., Piccione, P., & Santoro, B. (2016). Bifurcation of periodic solutions to the singular Yamabe problem on spheres. Journal of Differential Geometry, 103( 2), 191-205. doi:10.4310/jdg/1463404117
    • NLM

      Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1463404117
    • Vancouver

      Bettiol RG, Piccione P, Santoro B. Bifurcation of periodic solutions to the singular Yamabe problem on spheres [Internet]. Journal of Differential Geometry. 2016 ; 103( 2): 191-205.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1463404117
  • Source: Journal of Differential Geometry. Unidade: IME

    Assunto: ESPAÇOS SIMÉTRICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e THORBERGSSON, Gudlaugur. Variationally complete actions on compact symmetric spaces. Journal of Differential Geometry, v. 62, n. 1, p. 3948, 2002Tradução . . Disponível em: https://doi.org/10.4310/jdg/1090425528. Acesso em: 29 jan. 2026.
    • APA

      Gorodski, C., & Thorbergsson, G. (2002). Variationally complete actions on compact symmetric spaces. Journal of Differential Geometry, 62( 1), 3948. doi:10.4310/jdg/1090425528
    • NLM

      Gorodski C, Thorbergsson G. Variationally complete actions on compact symmetric spaces [Internet]. Journal of Differential Geometry. 2002 ; 62( 1): 3948.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1090425528
    • Vancouver

      Gorodski C, Thorbergsson G. Variationally complete actions on compact symmetric spaces [Internet]. Journal of Differential Geometry. 2002 ; 62( 1): 3948.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1090425528
  • Source: Journal of Differential Geometry. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELOSO, J M M. Lie's third theorem for intransitive lie equations. Journal of Differential Geometry, v. 32, n. 1 , p. 185-98, 1990Tradução . . Disponível em: https://doi.org/10.4310/jdg/1214445043. Acesso em: 29 jan. 2026.
    • APA

      Veloso, J. M. M. (1990). Lie's third theorem for intransitive lie equations. Journal of Differential Geometry, 32( 1 ), 185-98. doi:10.4310/jdg/1214445043
    • NLM

      Veloso JMM. Lie's third theorem for intransitive lie equations [Internet]. Journal of Differential Geometry. 1990 ;32( 1 ): 185-98.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214445043
    • Vancouver

      Veloso JMM. Lie's third theorem for intransitive lie equations [Internet]. Journal of Differential Geometry. 1990 ;32( 1 ): 185-98.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214445043
  • Source: Journal of Differential Geometry. Unidade: IME

    Assunto: FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Fabiano Gustavo Braga e LANGEVIN, Rémi e ROSENBERG, Harold. Intégrales de courbure sur des variétés feuilletées. Journal of Differential Geometry, v. 16, n. 1, p. 19-50, 1981Tradução . . Disponível em: https://doi.org/10.4310/jdg/1214435986. Acesso em: 29 jan. 2026.
    • APA

      Brito, F. G. B., Langevin, R., & Rosenberg, H. (1981). Intégrales de courbure sur des variétés feuilletées. Journal of Differential Geometry, 16( 1), 19-50. doi:10.4310/jdg/1214435986
    • NLM

      Brito FGB, Langevin R, Rosenberg H. Intégrales de courbure sur des variétés feuilletées [Internet]. Journal of Differential Geometry. 1981 ; 16( 1): 19-50.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214435986
    • Vancouver

      Brito FGB, Langevin R, Rosenberg H. Intégrales de courbure sur des variétés feuilletées [Internet]. Journal of Differential Geometry. 1981 ; 16( 1): 19-50.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214435986
  • Source: Journal of Differential Geometry. Unidade: IME

    Subjects: FOLHEAÇÕES, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Fabiano Gustavo Braga. Une obstruction géométrique à l'existence de feuilletages de codimension 1 totalement géodésiques. Journal of Differential Geometry, v. 16, n. 4, p. 675-684, 1981Tradução . . Disponível em: https://doi.org/10.2748/tmj/1178228802. Acesso em: 29 jan. 2026.
    • APA

      Brito, F. G. B. (1981). Une obstruction géométrique à l'existence de feuilletages de codimension 1 totalement géodésiques. Journal of Differential Geometry, 16( 4), 675-684. doi:10.2748/tmj/1178228802
    • NLM

      Brito FGB. Une obstruction géométrique à l'existence de feuilletages de codimension 1 totalement géodésiques [Internet]. Journal of Differential Geometry. 1981 ; 16( 4): 675-684.[citado 2026 jan. 29 ] Available from: https://doi.org/10.2748/tmj/1178228802
    • Vancouver

      Brito FGB. Une obstruction géométrique à l'existence de feuilletages de codimension 1 totalement géodésiques [Internet]. Journal of Differential Geometry. 1981 ; 16( 4): 675-684.[citado 2026 jan. 29 ] Available from: https://doi.org/10.2748/tmj/1178228802
  • Source: Journal of Differential Geometry. Unidade: RUSP

    Subjects: ÁLGEBRAS DE LIE, EQUAÇÕES DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTELHO, Junia Borges. Le théorème de Frobenius formel. Journal of Differential Geometry, v. 12, n. 3, p. 319-325, 1977Tradução . . Disponível em: https://doi.org/10.4310/jdg/1214434087. Acesso em: 29 jan. 2026.
    • APA

      Botelho, J. B. (1977). Le théorème de Frobenius formel. Journal of Differential Geometry, 12( 3), 319-325. doi:10.4310/jdg/1214434087
    • NLM

      Botelho JB. Le théorème de Frobenius formel [Internet]. Journal of Differential Geometry. 1977 ; 12( 3): 319-325.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214434087
    • Vancouver

      Botelho JB. Le théorème de Frobenius formel [Internet]. Journal of Differential Geometry. 1977 ; 12( 3): 319-325.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4310/jdg/1214434087

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026