Filtros : "Electronic Journal of Probability" Removidos: "Talet, Marina" "FONTES, LUIZ RENATO GONCALVES" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Probability. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, v. 24, p. 1-30, 2019Tradução . . Disponível em: https://doi.org/10.1214/19-ejp324. Acesso em: 05 nov. 2024.
    • APA

      De Masi, A., Ferrari, P. A., Presutti, E., & Soprano-Loto, N. (2019). Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, 24, 1-30. doi:10.1214/19-ejp324
    • NLM

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/19-ejp324
    • Vancouver

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/19-ejp324
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GANTERT, Nina e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, v. 14, n. paper 22, p. 569-593, 2009Tradução . . Disponível em: https://doi.org/10.1214/ejp.v14-631. Acesso em: 05 nov. 2024.
    • APA

      Gantert, N., Popov, S. Y., & Vachkovskaia, M. (2009). Survival time of random walk in random environment among soft obstacles. Electronic Journal of Probability, 14( paper 22), 569-593. doi:10.1214/ejp.v14-631
    • NLM

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/ejp.v14-631
    • Vancouver

      Gantert N, Popov SY, Vachkovskaia M. Survival time of random walk in random environment among soft obstacles [Internet]. Electronic Journal of Probability. 2009 ; 14( paper 22): 569-593.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/ejp.v14-631
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLET, Pierre e GALVES, Antonio e LEONARDI, Florencia Graciela. Random perturbations of stochastic processes with unbounded variable length memory. Electronic Journal of Probability, v. 13, p. 1345-1361, 2008Tradução . . Disponível em: https://doi.org/10.1214/EJP.v13-538. Acesso em: 05 nov. 2024.
    • APA

      Collet, P., Galves, A., & Leonardi, F. G. (2008). Random perturbations of stochastic processes with unbounded variable length memory. Electronic Journal of Probability, 13, 1345-1361. doi:10.1214/EJP.v13-538
    • NLM

      Collet P, Galves A, Leonardi FG. Random perturbations of stochastic processes with unbounded variable length memory [Internet]. Electronic Journal of Probability. 2008 ; 13 1345-1361.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v13-538
    • Vancouver

      Collet P, Galves A, Leonardi FG. Random perturbations of stochastic processes with unbounded variable length memory [Internet]. Electronic Journal of Probability. 2008 ; 13 1345-1361.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v13-538
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATZINGER, Heinrich e POPOV, Serguei Yu. Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, v. 12, p. 637-660, 2007Tradução . . Disponível em: https://doi.org/10.1214/EJP.v12-409. Acesso em: 05 nov. 2024.
    • APA

      Matzinger, H., & Popov, S. Y. (2007). Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, 12, 637-660. doi:10.1214/EJP.v12-409
    • NLM

      Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v12-409
    • Vancouver

      Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v12-409
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e MARIC, Nevena. Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electronic Journal of Probability, v. 12, p. 684-702, 2007Tradução . . Disponível em: https://doi.org/10.1214/EJP.v12-415. Acesso em: 05 nov. 2024.
    • APA

      Ferrari, P. A., & Maric, N. (2007). Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electronic Journal of Probability, 12, 684-702. doi:10.1214/EJP.v12-415
    • NLM

      Ferrari PA, Maric N. Quasi stationary distributions and Fleming-Viot processes in countable spaces [Internet]. Electronic Journal of Probability. 2007 ; 12 684-702.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v12-415
    • Vancouver

      Ferrari PA, Maric N. Quasi stationary distributions and Fleming-Viot processes in countable spaces [Internet]. Electronic Journal of Probability. 2007 ; 12 684-702.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v12-415
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KURKOVA, Irina e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On infection spreading and competition between independent random walks. Electronic Journal of Probability, v. 9, p. 293-315, 2004Tradução . . Disponível em: https://doi.org/10.1214/EJP.v9-197. Acesso em: 05 nov. 2024.
    • APA

      Kurkova, I., Popov, S. Y., & Vachkovskaia, M. (2004). On infection spreading and competition between independent random walks. Electronic Journal of Probability, 9, 293-315. doi:10.1214/EJP.v9-197
    • NLM

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v9-197
    • Vancouver

      Kurkova I, Popov SY, Vachkovskaia M. On infection spreading and competition between independent random walks [Internet]. Electronic Journal of Probability. 2004 ; 9 293-315.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v9-197
  • Source: Electronic Journal of Probability. Unidade: IME

    Assunto: PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Oswaldo Scarpa Magalhães e MACHADO, Fábio Prates e POPOV, Serguei Yu. Phase transition for the frog model. Electronic Journal of Probability, v. 7, p. 1-21, 2002Tradução . . Disponível em: https://doi.org/10.1214/EJP.v7-115. Acesso em: 05 nov. 2024.
    • APA

      Alves, O. S. M., Machado, F. P., & Popov, S. Y. (2002). Phase transition for the frog model. Electronic Journal of Probability, 7, 1-21. doi:10.1214/EJP.v7-115
    • NLM

      Alves OSM, Machado FP, Popov SY. Phase transition for the frog model [Internet]. Electronic Journal of Probability. 2002 ; 7 1-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v7-115
    • Vancouver

      Alves OSM, Machado FP, Popov SY. Phase transition for the frog model [Internet]. Electronic Journal of Probability. 2002 ; 7 1-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v7-115
  • Source: Electronic Journal of Probability. Unidades: IEA, IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRESSAUD, Xavier e FERNANDEZ, Roberto e GALVES, Antonio. Decay of correlations for non-Holderian dynamics. A coupling approach. Electronic Journal of Probability, v. 4, n. paper 3, p. 1-19, 1999Tradução . . Disponível em: https://doi.org/10.1214/EJP.v4-40. Acesso em: 05 nov. 2024.
    • APA

      Bressaud, X., Fernandez, R., & Galves, A. (1999). Decay of correlations for non-Holderian dynamics. A coupling approach. Electronic Journal of Probability, 4( paper 3), 1-19. doi:10.1214/EJP.v4-40
    • NLM

      Bressaud X, Fernandez R, Galves A. Decay of correlations for non-Holderian dynamics. A coupling approach [Internet]. Electronic Journal of Probability. 1999 ; 4( paper 3): 1-19.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v4-40
    • Vancouver

      Bressaud X, Fernandez R, Galves A. Decay of correlations for non-Holderian dynamics. A coupling approach [Internet]. Electronic Journal of Probability. 1999 ; 4( paper 3): 1-19.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1214/EJP.v4-40

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024