Detecting a local perturbation in a continuous scenery (2007)
- Authors:
- Autor USP: POPOV, SERGUEI - IME
- Unidade: IME
- DOI: 10.1214/EJP.v12-409
- Assunto: PROCESSOS ESTOCÁSTICOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Electronic Journal of Probability
- ISSN: 1083-6489
- Volume/Número/Paginação/Ano: v. 12, p. 637-660, 2007
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MATZINGER, Heinrich e POPOV, Serguei Yu. Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, v. 12, p. 637-660, 2007Tradução . . Disponível em: https://doi.org/10.1214/EJP.v12-409. Acesso em: 22 jan. 2026. -
APA
Matzinger, H., & Popov, S. Y. (2007). Detecting a local perturbation in a continuous scenery. Electronic Journal of Probability, 12, 637-660. doi:10.1214/EJP.v12-409 -
NLM
Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1214/EJP.v12-409 -
Vancouver
Matzinger H, Popov SY. Detecting a local perturbation in a continuous scenery [Internet]. Electronic Journal of Probability. 2007 ; 12 637-660.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1214/EJP.v12-409 - On infection spreading and competition between independent random walks
- A note on matrix multiplicative cascades and bindweeds
- Random Bulgarian solitaire
- Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment
- Frogs in random environment
- Billiards in a General Domain with Random Reflections
- Polling systemd with parameter regeneration, the general case
- Quenched invariance principle for the Knudsen stochastic billiard in a Random tube
- The number of open paths in an oriented rho-percolation model
- On a multiscale continuous percolation model with unbounded deffects
Informações sobre o DOI: 10.1214/EJP.v12-409 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas