Filtros : "Dynamics of Continuous, Discrete and Impulsive Systems" Limpar

Filtros



Refine with date range


  • Source: Dynamics of Continuous, Discrete and Impulsive Systems. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PRIMO, Marcos Roberto Teixeira. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems, v. 7, p. 541-560, 2000Tradução . . Acesso em: 12 fev. 2026.
    • APA

      Carvalho, A. N. de, & Primo, M. R. T. (2000). Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems, 7, 541-560.
    • NLM

      Carvalho AN de, Primo MRT. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems. 2000 ;7 541-560.[citado 2026 fev. 12 ]
    • Vancouver

      Carvalho AN de, Primo MRT. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems. 2000 ;7 541-560.[citado 2026 fev. 12 ]
  • Source: Dynamics of Continuous, Discrete and Impulsive Systems. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA FILHO, O C e CARVALHO, L A V. Study of the retarded differential equation x (t) =ax(t)+bx ([t])+cx ([t-1]). Dynamics of Continuous, Discrete and Impulsive Systems, v. 2 , p. 285-301, 1996Tradução . . Acesso em: 12 fev. 2026.
    • APA

      Oliveira Filho, O. C., & Carvalho, L. A. V. (1996). Study of the retarded differential equation x (t) =ax(t)+bx ([t])+cx ([t-1]). Dynamics of Continuous, Discrete and Impulsive Systems, 2 , 285-301.
    • NLM

      Oliveira Filho OC, Carvalho LAV. Study of the retarded differential equation x (t) =ax(t)+bx ([t])+cx ([t-1]). Dynamics of Continuous, Discrete and Impulsive Systems. 1996 ;2 285-301.[citado 2026 fev. 12 ]
    • Vancouver

      Oliveira Filho OC, Carvalho LAV. Study of the retarded differential equation x (t) =ax(t)+bx ([t])+cx ([t-1]). Dynamics of Continuous, Discrete and Impulsive Systems. 1996 ;2 285-301.[citado 2026 fev. 12 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026