Boundary synchronization in parabolic problems with nonlinear boundary conditions (2000)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Source:
- Título: Dynamics of Continuous, Discrete and Impulsive Systems
- ISSN: 1201-3390
- Volume/Número/Paginação/Ano: v.7, p. 541-560, 2000
-
ABNT
CARVALHO, Alexandre Nolasco de e PRIMO, Marcos Roberto Teixeira. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems, v. 7, p. 541-560, 2000Tradução . . Acesso em: 13 fev. 2026. -
APA
Carvalho, A. N. de, & Primo, M. R. T. (2000). Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems, 7, 541-560. -
NLM
Carvalho AN de, Primo MRT. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems. 2000 ;7 541-560.[citado 2026 fev. 13 ] -
Vancouver
Carvalho AN de, Primo MRT. Boundary synchronization in parabolic problems with nonlinear boundary conditions. Dynamics of Continuous, Discrete and Impulsive Systems. 2000 ;7 541-560.[citado 2026 fev. 13 ] - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
