Filtros : "Discrete and Continuous Dynamical Systems. Series A" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems. Series A, v. 33, n. 1, p. 27-46, 2013Tradução . . Disponível em: https://doi.org/10.3934/dcds.2013.33.27. Acesso em: 06 dez. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2013). On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems. Series A, 33( 1), 27-46. doi:10.3934/dcds.2013.33.27
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. On general properties of retarded functional differential equations on manifolds [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2013 ; 33( 1): 27-46.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2013.33.27
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. On general properties of retarded functional differential equations on manifolds [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2013 ; 33( 1): 27-46.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2013.33.27
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e BANQUET, Carlos e SCIALOM, Márcia. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems. Series A, v. 30, n. 3, p. 851-871, 2011Tradução . . Disponível em: https://doi.org/10.3934/dcds.2011.30.851. Acesso em: 06 dez. 2025.
    • APA

      Pava, J. A., Banquet, C., & Scialom, M. (2011). Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems. Series A, 30( 3), 851-871. doi:10.3934/dcds.2011.30.851
    • NLM

      Pava JA, Banquet C, Scialom M. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2011 ; 30( 3): 851-871.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2011.30.851
    • Vancouver

      Pava JA, Banquet C, Scialom M. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2011 ; 30( 3): 851-871.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2011.30.851
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Subjects: EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e SILVA, Severino Horácio da. Continuity of global attractors for a class of non local evolution equations. Discrete and Continuous Dynamical Systems. Series A, v. 26, n. 3, p. 1073-1100, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.1073. Acesso em: 06 dez. 2025.
    • APA

      Pereira, A. L., & Silva, S. H. da. (2010). Continuity of global attractors for a class of non local evolution equations. Discrete and Continuous Dynamical Systems. Series A, 26( 3), 1073-1100. doi:10.3934/dcds.2010.26.1073
    • NLM

      Pereira AL, Silva SH da. Continuity of global attractors for a class of non local evolution equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2010 ; 26( 3): 1073-1100.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2010.26.1073
    • Vancouver

      Pereira AL, Silva SH da. Continuity of global attractors for a class of non local evolution equations [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2010 ; 26( 3): 1073-1100.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2010.26.1073
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Subjects: SUPERFÍCIES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA EUCLIDIANA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e GARCIA, Ronaldo. Codimension two umbilic points on surfaces immersed in R³. Discrete and Continuous Dynamical Systems. Series A, v. 17, n. 2, p. 293-308, 2007Tradução . . Disponível em: https://doi.org/10.3934/dcds.2007.17.293. Acesso em: 06 dez. 2025.
    • APA

      Sotomayor, J., & Garcia, R. (2007). Codimension two umbilic points on surfaces immersed in R³. Discrete and Continuous Dynamical Systems. Series A, 17( 2), 293-308. doi:10.3934/dcds.2007.17.293
    • NLM

      Sotomayor J, Garcia R. Codimension two umbilic points on surfaces immersed in R³ [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2007 ; 17( 2): 293-308.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2007.17.293
    • Vancouver

      Sotomayor J, Garcia R. Codimension two umbilic points on surfaces immersed in R³ [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2007 ; 17( 2): 293-308.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2007.17.293
  • Source: Discrete and Continuous Dynamical Systems. Series A. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fábio e PICCIONE, Paolo e TAUSK, Daniel Victor. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems. Series A, v. 8, n. 3, p. 697-724, 2002Tradução . . Disponível em: https://doi.org/10.3934/dcds.2002.8.697. Acesso em: 06 dez. 2025.
    • APA

      Giannoni, F., Piccione, P., & Tausk, D. V. (2002). Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems. Series A, 8( 3), 697-724. doi:10.3934/dcds.2002.8.697
    • NLM

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2002 ; 8( 3): 697-724.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2002.8.697
    • Vancouver

      Giannoni F, Piccione P, Tausk DV. Morse theory for the travel time brachistochrones in stationary spacetimes [Internet]. Discrete and Continuous Dynamical Systems. Series A. 2002 ; 8( 3): 697-724.[citado 2025 dez. 06 ] Available from: https://doi.org/10.3934/dcds.2002.8.697

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025