Filtros : "Communications in Mathematical Physics" Removido: "IME" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COATES, Douglas e LUZZATTO, Stefano. Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, v. 405, n. 4, p. 1-34, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00220-024-04957-0. Acesso em: 29 jun. 2025.
    • APA

      Coates, D., & Luzzatto, S. (2024). Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, 405( 4), 1-34. doi:10.1007/s00220-024-04957-0
    • NLM

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
    • Vancouver

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEOREMA DO PONTO FIXO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e PROKHOROV, Andrei e SILVA, Guilherme Lima Ferreira da. Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, v. 401, n. 2, p. 1753-1806, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04683-z. Acesso em: 29 jun. 2025.
    • APA

      Baik, J., Prokhorov, A., & Silva, G. L. F. da. (2023). Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, 401( 2), 1753-1806. doi:10.1007/s00220-023-04683-z
    • NLM

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
    • Vancouver

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRO-DIFERENCIAIS, MATRIZES, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GHOSAL, Promit e SILVA, Guilherme Lima Ferreira da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, v. 397, n. 3, p. 1237-1307, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-022-04518-3. Acesso em: 29 jun. 2025.
    • APA

      Ghosal, P., & Silva, G. L. F. da. (2023). Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, 397( 3), 1237-1307. doi:10.1007/s00220-022-04518-3
    • NLM

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
    • Vancouver

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NIJHOUT, Eddie et al. Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, v. 401, p. 2715-2756, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04699-5. Acesso em: 29 jun. 2025.
    • APA

      Nijhout, E., Pereira, T., Queiroz, F. C. de, & Turaev, D. (2023). Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, 401, 2715-2756. doi:10.1007/s00220-023-04699-5
    • NLM

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
    • Vancouver

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, v. 385, n. 3, p. 1957-2007, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-04015-z. Acesso em: 29 jun. 2025.
    • APA

      Baladi, V., & Smania, D. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z
    • NLM

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
    • Vancouver

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-FINKELSHTEIN, Andrei e SILVA, Guilherme Lima Ferreira da. Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, v. 383, n. 3, p. 2163-2242, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03999-y. Acesso em: 29 jun. 2025.
    • APA

      Martínez-Finkelshtein, A., & Silva, G. L. F. da. (2021). Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, 383( 3), 2163-2242. doi:10.1007/s00220-021-03999-y
    • NLM

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
    • Vancouver

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Guilherme Lima Ferreira da e ZHANG, Lun. Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, v. 377, n. 3, p. 2345-2427, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03763-8. Acesso em: 29 jun. 2025.
    • APA

      Silva, G. L. F. da, & Zhang, L. (2020). Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, 377( 3), 2345-2427. doi:10.1007/s00220-020-03763-8
    • NLM

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-020-03763-8
    • Vancouver

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-020-03763-8
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA QUÂNTICA, SIMETRIA (FÍSICA DE PARTÍCULAS), SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZA, Nelson Javier Buitrago e BRU, J. -B. e DE SIQUEIRA PEDRA, Walter. Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, v. 360, n. ju 2018, p. 715-726, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3121-0. Acesso em: 29 jun. 2025.
    • APA

      Aza, N. J. B., Bru, J. -B., & De Siqueira Pedra, W. (2018). Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, 360( ju 2018), 715-726. doi:10.1007/s00220-018-3121-0
    • NLM

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
    • Vancouver

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      O'CARROLL, Michael e FARIA DA VEIGA, Paulo Afonso e FRANCISCO NETO, Antonio. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, v. 321, n. 1, p. 249\2013282, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00220-013-1688-z. Acesso em: 29 jun. 2025.
    • APA

      O'Carroll, M., Faria da Veiga, P. A., & Francisco Neto, A. (2013). Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, 321( 1), 249\2013282. doi:10.1007/s00220-013-1688-z
    • NLM

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-013-1688-z
    • Vancouver

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-013-1688-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, v. 306, n. 1, p. 35-49, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00220-011-1275-0. Acesso em: 29 jun. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio e ZERBINI, S. Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, v. 273, n. 3, p. 677-704, 2007Tradução . . Disponível em: https://doi.org/10.1007/s00220-007-0229-z. Acesso em: 29 jun. 2025.
    • APA

      Spreafico, M. F., & Zerbini, S. (2007). Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, 273( 3), 677-704. doi:10.1007/s00220-007-0229-z
    • NLM

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
    • Vancouver

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENTILE, Guido e CORTEZ, Daniel Augusto e BARATA, João Carlos Alves. Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, v. 260, n. 2, p. 403-443, 2005Tradução . . Disponível em: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=. Acesso em: 29 jun. 2025.
    • APA

      Gentile, G., Cortez, D. A., & Barata, J. C. A. (2005). Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, 260( 2), 403-443. Recuperado de http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • NLM

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 jun. 29 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • Vancouver

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 jun. 29 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O'CARROLL, Michael e SCHOR, Ricardo. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, v. 245, p. 383-406, 2004Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., & Schor, R. (2004). Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, 245, 383-406.
    • NLM

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 jun. 29 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso et al. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, v. 220, p. 377-402, 2001Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., Pereira, E., & Schor, R. (2001). Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, 220, 377-402.
    • NLM

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 jun. 29 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: EQUAÇÕES DIFERENCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIDI, Leonardo F e MARCHETTI, Domingos H. U. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics, v. 219, n. 3, p. 671-702, 2001Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Guidi, L. F., & Marchetti, D. H. U. (2001). Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics, 219( 3), 671-702.
    • NLM

      Guidi LF, Marchetti DHU. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics. 2001 ; 219( 3): 671-702.[citado 2025 jun. 29 ]
    • Vancouver

      Guidi LF, Marchetti DHU. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics. 2001 ; 219( 3): 671-702.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, v. 191, n. 2, p. 409-466, 1998Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1998). Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, 191( 2), 409-466.
    • NLM

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 29 ]
    • Vancouver

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidades: ICMC, IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHETTI, Domingos H. U. e FARIA DA VEIGA, Paulo Afonso e HURD, T R. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics, v. 179, p. 632-646, 1996Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Marchetti, D. H. U., Faria da Veiga, P. A., & Hurd, T. R. (1996). 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics, 179, 632-646.
    • NLM

      Marchetti DHU, Faria da Veiga PA, Hurd TR. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics. 1996 ; 179 632-646.[citado 2025 jun. 29 ]
    • Vancouver

      Marchetti DHU, Faria da Veiga PA, Hurd TR. 1 / n - expansion as a perturbation about the mean field theory: a one-dimensional fermi model. Communications in Mathematical Physics. 1996 ; 179 632-646.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, v. 171, p. 27-86, 1995Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1995). Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, 171, 27-86.
    • NLM

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 jun. 29 ]
    • Vancouver

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA DE PARTÍCULAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDALLA, E. et al. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics, v. 166, p. 379-96, 1994Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Abdalla, E., Abdalla, M. C. B., Brunelli, J. C., & Zadra, A. (1994). Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics, 166, 379-96.
    • NLM

      Abdalla E, Abdalla MCB, Brunelli JC, Zadra A. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics. 1994 ;166 379-96.[citado 2025 jun. 29 ]
    • Vancouver

      Abdalla E, Abdalla MCB, Brunelli JC, Zadra A. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics. 1994 ;166 379-96.[citado 2025 jun. 29 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics, v. 143, n. ja 1992, p. 545-58, 1992Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Barata, J. C. A. (1992). Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics, 143( ja 1992), 545-58.
    • NLM

      Barata JCA. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics. 1992 ;143( ja 1992): 545-58.[citado 2025 jun. 29 ]
    • Vancouver

      Barata JCA. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics. 1992 ;143( ja 1992): 545-58.[citado 2025 jun. 29 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025