Filtros : "Communications in Analysis and Geometry" Limpar

Filtros



Refine with date range


  • Source: Communications in Analysis and Geometry. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DERDZINSKI, Andrzej e PICCIONE, Paolo. Harmonic-curvature warped products over surfaces. Communications in Analysis and Geometry, v. 32, n. 9, p. 2345-2379, 2024Tradução . . Disponível em: https://doi.org/10.4310/CAG.241212032559. Acesso em: 10 fev. 2026.
    • APA

      Derdzinski, A., & Piccione, P. (2024). Harmonic-curvature warped products over surfaces. Communications in Analysis and Geometry, 32( 9), 2345-2379. doi:10.4310/CAG.241212032559
    • NLM

      Derdzinski A, Piccione P. Harmonic-curvature warped products over surfaces [Internet]. Communications in Analysis and Geometry. 2024 ; 32( 9): 2345-2379.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.241212032559
    • Vancouver

      Derdzinski A, Piccione P. Harmonic-curvature warped products over surfaces [Internet]. Communications in Analysis and Geometry. 2024 ; 32( 9): 2345-2379.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.241212032559
  • Source: Communications in Analysis and Geometry. Unidade: FFCLRP

    Subjects: HOLOMORFIA, MATEMÁTICA, EQUAÇÕES, GEOMETRIA DIFERENCIAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Alexandre Casassola. Holomorphic triples and the prescribed curvature problem on S2. Communications in Analysis and Geometry, v. 24, n. 3, p. 559-591, 2016Tradução . . Disponível em: https://doi.org/10.4310/cag.2016.v24.n3.a5. Acesso em: 10 fev. 2026.
    • APA

      Gonçalves, A. C. (2016). Holomorphic triples and the prescribed curvature problem on S2. Communications in Analysis and Geometry, 24( 3), 559-591. doi:10.4310/cag.2016.v24.n3.a5
    • NLM

      Gonçalves AC. Holomorphic triples and the prescribed curvature problem on S2 [Internet]. Communications in Analysis and Geometry. 2016 ; 24( 3): 559-591.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2016.v24.n3.a5
    • Vancouver

      Gonçalves AC. Holomorphic triples and the prescribed curvature problem on S2 [Internet]. Communications in Analysis and Geometry. 2016 ; 24( 3): 559-591.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2016.v24.n3.a5
  • Source: Communications in Analysis and Geometry. Unidade: IME

    Subjects: ANÁLISE GLOBAL, TEORIA DE MORSE, GEOMETRIA DE GEODÉSICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Morse theory for geodesics in singular conformal metrics. Communications in Analysis and Geometry, v. 22, n. 5, p. 779-809, 2014Tradução . . Disponível em: https://doi.org/10.4310/CAG.2014.v22.n5.a1. Acesso em: 10 fev. 2026.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2014). Morse theory for geodesics in singular conformal metrics. Communications in Analysis and Geometry, 22( 5), 779-809. doi:10.4310/CAG.2014.v22.n5.a1
    • NLM

      Giambó R, Giannoni F, Piccione P. Morse theory for geodesics in singular conformal metrics [Internet]. Communications in Analysis and Geometry. 2014 ; 22( 5): 779-809.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.2014.v22.n5.a1
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Morse theory for geodesics in singular conformal metrics [Internet]. Communications in Analysis and Geometry. 2014 ; 22( 5): 779-809.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.2014.v22.n5.a1
  • Source: Communications in Analysis and Geometry. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e ROMERO-FUSTER, Maria del Carmen. 3-manifolds in Euclidean space from a contact viewpoint. Communications in Analysis and Geometry, v. 17, n. 4, p. 755-776, 2009Tradução . . Disponível em: https://doi.org/10.4310/cag.2009.v17.n4.a8. Acesso em: 10 fev. 2026.
    • APA

      Nabarro, A. C., & Romero-Fuster, M. del C. (2009). 3-manifolds in Euclidean space from a contact viewpoint. Communications in Analysis and Geometry, 17( 4), 755-776. doi:10.4310/cag.2009.v17.n4.a8
    • NLM

      Nabarro AC, Romero-Fuster M del C. 3-manifolds in Euclidean space from a contact viewpoint [Internet]. Communications in Analysis and Geometry. 2009 ; 17( 4): 755-776.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2009.v17.n4.a8
    • Vancouver

      Nabarro AC, Romero-Fuster M del C. 3-manifolds in Euclidean space from a contact viewpoint [Internet]. Communications in Analysis and Geometry. 2009 ; 17( 4): 755-776.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2009.v17.n4.a8
  • Source: Communications in Analysis and Geometry. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIOTTI, Leonardo e MERCURI, Francesco e PICCIONE, Paolo. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, v. 16, n. 2, p. 333-393, 2008Tradução . . Disponível em: https://doi.org/10.4310/CAG.2008.v16.n2.a3. Acesso em: 10 fev. 2026.
    • APA

      Biliotti, L., Mercuri, F., & Piccione, P. (2008). On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes. Communications in Analysis and Geometry, 16( 2), 333-393. doi:10.4310/CAG.2008.v16.n2.a3
    • NLM

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
    • Vancouver

      Biliotti L, Mercuri F, Piccione P. On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes [Internet]. Communications in Analysis and Geometry. 2008 ; 16( 2): 333-393.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/CAG.2008.v16.n2.a3
  • Source: Communications in Analysis and Geometry. Unidade: FFCLRP

    Assunto: EQUAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Alexandre e UHLENBECK, Karen. Moduli space theory for constant mean curvature surfaces immersed in space-forms. Communications in Analysis and Geometry, v. 15, n. 2, p. 299-305, 2007Tradução . . Disponível em: https://doi.org/10.4310/cag.2007.v15.n2.a4. Acesso em: 10 fev. 2026.
    • APA

      Gonçalves, A., & Uhlenbeck, K. (2007). Moduli space theory for constant mean curvature surfaces immersed in space-forms. Communications in Analysis and Geometry, 15( 2), 299-305. doi:10.4310/cag.2007.v15.n2.a4
    • NLM

      Gonçalves A, Uhlenbeck K. Moduli space theory for constant mean curvature surfaces immersed in space-forms [Internet]. Communications in Analysis and Geometry. 2007 ; 15( 2): 299-305.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2007.v15.n2.a4
    • Vancouver

      Gonçalves A, Uhlenbeck K. Moduli space theory for constant mean curvature surfaces immersed in space-forms [Internet]. Communications in Analysis and Geometry. 2007 ; 15( 2): 299-305.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2007.v15.n2.a4
  • Source: Communications in Analysis and Geometry. Unidade: IME

    Assunto: GEOMETRIA SUB-RIEMANNIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. On the distribution of conjugate points along semi-Riemannian geodesics. Communications in Analysis and Geometry, v. 11, n. 1, p. 33-48, 2003Tradução . . Disponível em: https://doi.org/10.4310/cag.2003.v11.n1.a3. Acesso em: 10 fev. 2026.
    • APA

      Piccione, P., & Tausk, D. V. (2003). On the distribution of conjugate points along semi-Riemannian geodesics. Communications in Analysis and Geometry, 11( 1), 33-48. doi:10.4310/cag.2003.v11.n1.a3
    • NLM

      Piccione P, Tausk DV. On the distribution of conjugate points along semi-Riemannian geodesics [Internet]. Communications in Analysis and Geometry. 2003 ; 11( 1): 33-48.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2003.v11.n1.a3
    • Vancouver

      Piccione P, Tausk DV. On the distribution of conjugate points along semi-Riemannian geodesics [Internet]. Communications in Analysis and Geometry. 2003 ; 11( 1): 33-48.[citado 2026 fev. 10 ] Available from: https://doi.org/10.4310/cag.2003.v11.n1.a3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026