Filtros : "Advances in Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Advances in Differential Equations. Unidades: ICMC, IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María et al. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, v. Jan.-Fe 2024, n. 1-2, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.57262/ade029-0102-1. Acesso em: 03 nov. 2024.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Moreira, E. M., & Valero, J. (2024). Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, Jan.-Fe 2024( 1-2), 1-26. doi:10.57262/ade029-0102-1
    • NLM

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 nov. 03 ] Available from: https://doi.org/10.57262/ade029-0102-1
    • Vancouver

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 nov. 03 ] Available from: https://doi.org/10.57262/ade029-0102-1
  • Source: Advances in Differential Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, v. 23, n. 11-12, p. 793-846, 2018Tradução . . Disponível em: https://doi.org/10.1177/1747954118808068. Acesso em: 03 nov. 2024.
    • APA

      Pava, J. A., & Goloshchapova, N. (2018). Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, 23( 11-12), 793-846. doi:10.1177/1747954118808068
    • NLM

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1177/1747954118808068
    • Vancouver

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1177/1747954118808068
  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, v. 23, n. 11-12, p. 847-888, 2017Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835. Acesso em: 03 nov. 2024.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Advances in Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, v. 19, n. 1-2, p. 31-50, 2014Tradução . . Acesso em: 03 nov. 2024.
    • APA

      Pimenta, M. T. O., & Soares, S. H. M. (2014). Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, 19( 1-2), 31-50.
    • NLM

      Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2024 nov. 03 ]
    • Vancouver

      Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2024 nov. 03 ]
  • Source: Advances in Differential Equations. Unidade: IME

    Assunto: EQUAÇÃO DE SCHRODINGER

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e CORCHO, A. J. e HAKKAEV, S. Well posedness and stability in the periodic case for the Benney system. Advances in Differential Equations, v. 16, n. 5-6, p. 523-550, 2011Tradução . . Disponível em: https://projecteuclid.org/journals/advances-in-differential-equations/volume-16/issue-5_2f_6/Well-posedness-and-stability-in-the-periodic-case-for-the/ade/1355703299.full?tab=ArticleLink. Acesso em: 03 nov. 2024.
    • APA

      Pava, J. A., Corcho, A. J., & Hakkaev, S. (2011). Well posedness and stability in the periodic case for the Benney system. Advances in Differential Equations, 16( 5-6), 523-550. Recuperado de https://projecteuclid.org/journals/advances-in-differential-equations/volume-16/issue-5_2f_6/Well-posedness-and-stability-in-the-periodic-case-for-the/ade/1355703299.full?tab=ArticleLink
    • NLM

      Pava JA, Corcho AJ, Hakkaev S. Well posedness and stability in the periodic case for the Benney system [Internet]. Advances in Differential Equations. 2011 ; 16( 5-6): 523-550.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-16/issue-5_2f_6/Well-posedness-and-stability-in-the-periodic-case-for-the/ade/1355703299.full?tab=ArticleLink
    • Vancouver

      Pava JA, Corcho AJ, Hakkaev S. Well posedness and stability in the periodic case for the Benney system [Internet]. Advances in Differential Equations. 2011 ; 16( 5-6): 523-550.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-16/issue-5_2f_6/Well-posedness-and-stability-in-the-periodic-case-for-the/ade/1355703299.full?tab=ArticleLink
  • Source: Advances in Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Advances in Differential Equations, v. 10, n. 8, p. 931-960, 2005Tradução . . Disponível em: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full. Acesso em: 03 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2005). Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Advances in Differential Equations, 10( 8), 931-960. Recuperado de https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
    • NLM

      Giambó R, Giannoni F, Piccione P. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds [Internet]. Advances in Differential Equations. 2005 ; 10( 8): 931-960.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds [Internet]. Advances in Differential Equations. 2005 ; 10( 8): 931-960.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/advances-in-differential-equations/volume-10/issue-8/Orthogonal-geodesic-chords-brake-orbits-and-homoclinic-orbits-in-Riemannian/ade/1355867824.full
  • Source: Advances in Differential Equations. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri e GIANNONI, Fábio e PICCIONE, Paolo. A variational problem for manifold valued functions. Advances in Differential Equations, v. 5, n. 1/3, p. 369-400, 2000Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389. Acesso em: 03 nov. 2024.
    • APA

      Benci, V., Giannoni, F., & Piccione, P. (2000). A variational problem for manifold valued functions. Advances in Differential Equations, 5( 1/3), 369-400. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389
    • NLM

      Benci V, Giannoni F, Piccione P. A variational problem for manifold valued functions [Internet]. Advances in Differential Equations. 2000 ; 5( 1/3): 369-400.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389
    • Vancouver

      Benci V, Giannoni F, Piccione P. A variational problem for manifold valued functions [Internet]. Advances in Differential Equations. 2000 ; 5( 1/3): 369-400.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1356651389

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024