Singularly perturbed biharmonic problems with superlinear nonlinearities (2014)
- Authors:
- Autor USP: SOARES, SÉRGIO HENRIQUE MONARI - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Advances in Differential Equations
- ISSN: 1079-9389
- Volume/Número/Paginação/Ano: v. 19, n. 1-2, p. 31-50, 2014
-
ABNT
PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, v. 19, n. 1-2, p. 31-50, 2014Tradução . . Acesso em: 27 jan. 2026. -
APA
Pimenta, M. T. O., & Soares, S. H. M. (2014). Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, 19( 1-2), 31-50. -
NLM
Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2026 jan. 27 ] -
Vancouver
Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2026 jan. 27 ] - A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
- Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth
- Klein-Gordon-Maxwell equations without Ambrosetti-Rabinowitz
- Multiplicity of solutions for a Schrödinger equation involving a magnetic field with mixed boundary condition
- Multiplicity of positive solutions for a class of nonlinear Schrödinger equations
- Soluções radiais para equações em espaços do tipo Orlicz-Sobolev
- Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
- Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type
- Positive solutions of critical semilinear problems involving a sublinear term at the origin
- A sign-changing solution for the Schrödinger-Poisson equation in 'R POT.3'
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
