Source: Kobe Journal of Mathematics. Unidade: ICMC
Assunto: TOPOLOGIA
ABNT
LUCAS, Laércio Aparecido e MANZOLI NETO, Oziride e SAEKI, Osamu. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics, v. 13, n. 2, p. 145-165, 1996Tradução . . Acesso em: 05 nov. 2024.APA
Lucas, L. A., Manzoli Neto, O., & Saeki, O. (1996). A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics, 13( 2), 145-165.NLM
Lucas LA, Manzoli Neto O, Saeki O. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics. 1996 ; 13( 2): 145-165.[citado 2024 nov. 05 ]Vancouver
Lucas LA, Manzoli Neto O, Saeki O. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics. 1996 ; 13( 2): 145-165.[citado 2024 nov. 05 ]